![JAR search and dependency download from the Maven repository](/logo.png)
org.apache.mahout.flinkbindings.blas.FlinkOpAt.scala Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.mahout.flinkbindings.blas
import org.apache.flink.api.scala._
import org.apache.mahout.flinkbindings.drm.{FlinkDrm, RowsFlinkDrm}
import org.apache.mahout.math.{SequentialAccessSparseVector, Vector}
import org.apache.mahout.math.drm.logical.OpAt
import org.apache.mahout.math.scalabindings.RLikeOps._
import scala.Array.canBuildFrom
/**
* Implementation of Flink At
*/
object FlinkOpAt {
/**
* The idea here is simple: compile vertical column vectors of every partition block as sparse
* vectors of the A.nrow
length; then group them by their column index and sum the
* groups into final rows of the transposed matrix.
*/
def sparseTrick(op: OpAt, A: FlinkDrm[Int]): FlinkDrm[Int] = {
val ncol = op.ncol // # of rows of A, i.e. # of columns of A^T
val sparseParts = A.asBlockified.ds.flatMap {
blockifiedTuple =>
val keys = blockifiedTuple._1
val block = blockifiedTuple._2
(0 until block.ncol).map {
columnIndex =>
val columnVector: Vector = new SequentialAccessSparseVector(ncol)
keys.zipWithIndex.foreach {
case (key, idx) => columnVector(key) = block(idx, columnIndex)
}
(columnIndex, columnVector)
}
}
val regrouped = sparseParts.groupBy(0)
val sparseTotal = regrouped.reduce{
(left, right) =>
(left._1, left._2 + right._2)
}
// TODO: densify or not?
new RowsFlinkDrm(sparseTotal, ncol)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy