org.apache.mahout.benchmark.ClosestCentroidBenchmark Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-integration Show documentation
Show all versions of mahout-integration Show documentation
Optional components of Mahout which generally support interaction with third party systems,
formats, APIs, etc.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.benchmark;
import java.io.IOException;
import java.util.Random;
import org.apache.mahout.common.RandomUtils;
import org.apache.mahout.common.TimingStatistics;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.math.SparseMatrix;
import org.apache.mahout.math.Vector;
public class ClosestCentroidBenchmark {
private final VectorBenchmarks mark;
public ClosestCentroidBenchmark(VectorBenchmarks mark) {
this.mark = mark;
}
public void benchmark(DistanceMeasure measure) throws IOException {
SparseMatrix clusterDistances = new SparseMatrix(mark.numClusters, mark.numClusters);
for (int i = 0; i < mark.numClusters; i++) {
for (int j = 0; j < mark.numClusters; j++) {
double distance = Double.POSITIVE_INFINITY;
if (i != j) {
distance = measure.distance(mark.clusters[i], mark.clusters[j]);
}
clusterDistances.setQuick(i, j, distance);
}
}
long distanceCalculations = 0;
TimingStatistics stats = new TimingStatistics();
for (int l = 0; l < mark.loop; l++) {
TimingStatistics.Call call = stats.newCall(mark.leadTimeUsec);
for (int i = 0; i < mark.numVectors; i++) {
Vector vector = mark.vectors[1][mark.vIndex(i)];
double minDistance = Double.MAX_VALUE;
for (int k = 0; k < mark.numClusters; k++) {
double distance = measure.distance(vector, mark.clusters[k]);
distanceCalculations++;
if (distance < minDistance) {
minDistance = distance;
}
}
}
if (call.end(mark.maxTimeUsec)) {
break;
}
}
mark.printStats(stats, measure.getClass().getName(), "Closest C w/o Elkan's trick", "distanceCalculations = "
+ distanceCalculations);
distanceCalculations = 0;
stats = new TimingStatistics();
Random rand = RandomUtils.getRandom();
for (int l = 0; l < mark.loop; l++) {
TimingStatistics.Call call = stats.newCall(mark.leadTimeUsec);
for (int i = 0; i < mark.numVectors; i++) {
Vector vector = mark.vectors[1][mark.vIndex(i)];
int closestCentroid = rand.nextInt(mark.numClusters);
double dist = measure.distance(vector, mark.clusters[closestCentroid]);
distanceCalculations++;
for (int k = 0; k < mark.numClusters; k++) {
if (closestCentroid != k) {
double centroidDist = clusterDistances.getQuick(k, closestCentroid);
if (centroidDist < 2 * dist) {
dist = measure.distance(vector, mark.clusters[k]);
closestCentroid = k;
distanceCalculations++;
}
}
}
}
if (call.end(mark.maxTimeUsec)) {
break;
}
}
mark.printStats(stats, measure.getClass().getName(), "Closest C w/ Elkan's trick", "distanceCalculations = "
+ distanceCalculations);
}
}