org.apache.mahout.benchmark.DotBenchmark Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-integration Show documentation
Show all versions of mahout-integration Show documentation
Optional components of Mahout which generally support interaction with third party systems,
formats, APIs, etc.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.benchmark;
import static org.apache.mahout.benchmark.VectorBenchmarks.DENSE_FN_RAND;
import static org.apache.mahout.benchmark.VectorBenchmarks.DENSE_FN_SEQ;
import static org.apache.mahout.benchmark.VectorBenchmarks.DENSE_VECTOR;
import static org.apache.mahout.benchmark.VectorBenchmarks.RAND_FN_DENSE;
import static org.apache.mahout.benchmark.VectorBenchmarks.RAND_FN_SEQ;
import static org.apache.mahout.benchmark.VectorBenchmarks.RAND_SPARSE_VECTOR;
import static org.apache.mahout.benchmark.VectorBenchmarks.SEQ_FN_DENSE;
import static org.apache.mahout.benchmark.VectorBenchmarks.SEQ_FN_RAND;
import static org.apache.mahout.benchmark.VectorBenchmarks.SEQ_SPARSE_VECTOR;
import org.apache.mahout.benchmark.BenchmarkRunner.BenchmarkFn;
import org.apache.mahout.benchmark.BenchmarkRunner.BenchmarkFnD;
public class DotBenchmark {
private static final String DOT_PRODUCT = "DotProduct";
private static final String NORM1 = "Norm1";
private static final String NORM2 = "Norm2";
private static final String LOG_NORMALIZE = "LogNormalize";
private final VectorBenchmarks mark;
public DotBenchmark(VectorBenchmarks mark) {
this.mark = mark;
}
public void benchmark() {
benchmarkDot();
benchmarkNorm1();
benchmarkNorm2();
benchmarkLogNormalize();
}
private void benchmarkLogNormalize() {
mark.printStats(mark.getRunner().benchmark(new BenchmarkFn() {
@Override
public Boolean apply(Integer i) {
return depends(mark.vectors[0][mark.vIndex(i)].logNormalize());
}
}), LOG_NORMALIZE, DENSE_VECTOR);
mark.printStats(mark.getRunner().benchmark(new BenchmarkFn() {
@Override
public Boolean apply(Integer i) {
return depends(mark.vectors[1][mark.vIndex(i)].logNormalize());
}
}), LOG_NORMALIZE, RAND_SPARSE_VECTOR);
mark.printStats(mark.getRunner().benchmark(new BenchmarkFn() {
@Override
public Boolean apply(Integer i) {
return depends(mark.vectors[2][mark.vIndex(i)].logNormalize());
}
}), LOG_NORMALIZE, SEQ_SPARSE_VECTOR);
}
private void benchmarkNorm1() {
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[0][mark.vIndex(i)].norm(1);
}
}), NORM1, DENSE_VECTOR);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[1][mark.vIndex(i)].norm(1);
}
}), NORM1, RAND_SPARSE_VECTOR);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[2][mark.vIndex(i)].norm(1);
}
}), NORM1, SEQ_SPARSE_VECTOR);
}
private void benchmarkNorm2() {
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[0][mark.vIndex(i)].norm(2);
}
}), NORM2, DENSE_VECTOR);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[1][mark.vIndex(i)].norm(2);
}
}), NORM2, RAND_SPARSE_VECTOR);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[2][mark.vIndex(i)].norm(2);
}
}), NORM2, SEQ_SPARSE_VECTOR);
}
private void benchmarkDot() {
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[0][mark.vIndex(i)].dot(mark.vectors[0][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, DENSE_VECTOR);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[1][mark.vIndex(i)].dot(mark.vectors[1][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, RAND_SPARSE_VECTOR);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[2][mark.vIndex(i)].dot(mark.vectors[2][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, SEQ_SPARSE_VECTOR);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[0][mark.vIndex(i)].dot(mark.vectors[1][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, DENSE_FN_RAND);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[0][mark.vIndex(i)].dot(mark.vectors[2][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, DENSE_FN_SEQ);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[1][mark.vIndex(i)].dot(mark.vectors[0][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, RAND_FN_DENSE);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[1][mark.vIndex(i)].dot(mark.vectors[2][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, RAND_FN_SEQ);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[2][mark.vIndex(i)].dot(mark.vectors[0][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, SEQ_FN_DENSE);
mark.printStats(mark.getRunner().benchmarkD(new BenchmarkFnD() {
@Override
public Double apply(Integer i) {
return mark.vectors[2][mark.vIndex(i)].dot(mark.vectors[1][mark.vIndex(randIndex())]);
}
}), DOT_PRODUCT, SEQ_FN_RAND);
}
public static void main(String[] args) {
VectorBenchmarks mark = new VectorBenchmarks(1000000, 100, 1000, 10, 1);
mark.createData();
new DotBenchmark(mark).benchmarkNorm2();
System.out.println(mark);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy