org.apache.mahout.clustering.evaluation.RepresentativePointsDriver Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-integration Show documentation
Show all versions of mahout-integration Show documentation
Optional components of Mahout which generally support interaction with third party systems,
formats, APIs, etc.
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.clustering.evaluation;
import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.clustering.AbstractCluster;
import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.classify.WeightedVectorWritable;
import org.apache.mahout.clustering.iterator.ClusterWritable;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.ClassUtils;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileValueIterable;
import org.apache.mahout.math.VectorWritable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public final class RepresentativePointsDriver extends AbstractJob {
public static final String STATE_IN_KEY = "org.apache.mahout.clustering.stateIn";
public static final String DISTANCE_MEASURE_KEY = "org.apache.mahout.clustering.measure";
private static final Logger log = LoggerFactory.getLogger(RepresentativePointsDriver.class);
private RepresentativePointsDriver() {}
public static void main(String[] args) throws Exception {
ToolRunner.run(new Configuration(), new RepresentativePointsDriver(), args);
}
@Override
public int run(String[] args) throws ClassNotFoundException, IOException, InterruptedException {
addInputOption();
addOutputOption();
addOption("clusteredPoints", "cp", "The path to the clustered points", true);
addOption(DefaultOptionCreator.distanceMeasureOption().create());
addOption(DefaultOptionCreator.maxIterationsOption().create());
addOption(DefaultOptionCreator.methodOption().create());
if (parseArguments(args) == null) {
return -1;
}
Path input = getInputPath();
Path output = getOutputPath();
String distanceMeasureClass = getOption(DefaultOptionCreator.DISTANCE_MEASURE_OPTION);
int maxIterations = Integer.parseInt(getOption(DefaultOptionCreator.MAX_ITERATIONS_OPTION));
boolean runSequential = getOption(DefaultOptionCreator.METHOD_OPTION).equalsIgnoreCase(
DefaultOptionCreator.SEQUENTIAL_METHOD);
DistanceMeasure measure = ClassUtils.instantiateAs(distanceMeasureClass, DistanceMeasure.class);
Path clusteredPoints = new Path(getOption("clusteredPoints"));
run(getConf(), input, clusteredPoints, output, measure, maxIterations, runSequential);
return 0;
}
/**
* Utility to print out representative points
*
* @param output
* the Path to the directory containing representativePoints-i folders
* @param numIterations
* the int number of iterations to print
*/
public static void printRepresentativePoints(Path output, int numIterations) {
for (int i = 0; i <= numIterations; i++) {
Path out = new Path(output, "representativePoints-" + i);
System.out.println("Representative Points for iteration " + i);
Configuration conf = new Configuration();
for (Pair record : new SequenceFileDirIterable(out,
PathType.LIST, PathFilters.logsCRCFilter(), null, true, conf)) {
System.out.println("\tC-" + record.getFirst().get() + ": "
+ AbstractCluster.formatVector(record.getSecond().get(), null));
}
}
}
public static void run(Configuration conf, Path clustersIn, Path clusteredPointsIn, Path output,
DistanceMeasure measure, int numIterations, boolean runSequential) throws IOException, InterruptedException,
ClassNotFoundException {
Path stateIn = new Path(output, "representativePoints-0");
writeInitialState(stateIn, clustersIn);
for (int iteration = 0; iteration < numIterations; iteration++) {
log.info("Representative Points Iteration {}", iteration);
// point the output to a new directory per iteration
Path stateOut = new Path(output, "representativePoints-" + (iteration + 1));
runIteration(conf, clusteredPointsIn, stateIn, stateOut, measure, runSequential);
// now point the input to the old output directory
stateIn = stateOut;
}
conf.set(STATE_IN_KEY, stateIn.toString());
conf.set(DISTANCE_MEASURE_KEY, measure.getClass().getName());
}
private static void writeInitialState(Path output, Path clustersIn) throws IOException {
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(output.toUri(), conf);
for (FileStatus dir : fs.globStatus(clustersIn)) {
Path inPath = dir.getPath();
for (FileStatus part : fs.listStatus(inPath, PathFilters.logsCRCFilter())) {
Path inPart = part.getPath();
Path path = new Path(output, inPart.getName());
try (SequenceFile.Writer writer =
new SequenceFile.Writer(fs, conf, path, IntWritable.class, VectorWritable.class)){
for (ClusterWritable clusterWritable : new SequenceFileValueIterable(inPart, true, conf)) {
Cluster cluster = clusterWritable.getValue();
if (log.isDebugEnabled()) {
log.debug("C-{}: {}", cluster.getId(), AbstractCluster.formatVector(cluster.getCenter(), null));
}
writer.append(new IntWritable(cluster.getId()), new VectorWritable(cluster.getCenter()));
}
}
}
}
}
private static void runIteration(Configuration conf, Path clusteredPointsIn, Path stateIn, Path stateOut,
DistanceMeasure measure, boolean runSequential) throws IOException, InterruptedException, ClassNotFoundException {
if (runSequential) {
runIterationSeq(conf, clusteredPointsIn, stateIn, stateOut, measure);
} else {
runIterationMR(conf, clusteredPointsIn, stateIn, stateOut, measure);
}
}
/**
* Run the job using supplied arguments as a sequential process
*
* @param conf
* the Configuration to use
* @param clusteredPointsIn
* the directory pathname for input points
* @param stateIn
* the directory pathname for input state
* @param stateOut
* the directory pathname for output state
* @param measure
* the DistanceMeasure to use
*/
private static void runIterationSeq(Configuration conf, Path clusteredPointsIn, Path stateIn, Path stateOut,
DistanceMeasure measure) throws IOException {
Map> repPoints = RepresentativePointsMapper.getRepresentativePoints(conf, stateIn);
Map mostDistantPoints = new HashMap<>();
FileSystem fs = FileSystem.get(clusteredPointsIn.toUri(), conf);
for (Pair record
: new SequenceFileDirIterable(clusteredPointsIn, PathType.LIST,
PathFilters.logsCRCFilter(), null, true, conf)) {
RepresentativePointsMapper.mapPoint(record.getFirst(), record.getSecond(), measure, repPoints, mostDistantPoints);
}
int part = 0;
try (SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, new Path(stateOut, "part-m-" + part++),
IntWritable.class, VectorWritable.class)){
for (Entry> entry : repPoints.entrySet()) {
for (VectorWritable vw : entry.getValue()) {
writer.append(new IntWritable(entry.getKey()), vw);
}
}
}
try (SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, new Path(stateOut, "part-m-" + part++),
IntWritable.class, VectorWritable.class)){
for (Map.Entry entry : mostDistantPoints.entrySet()) {
writer.append(new IntWritable(entry.getKey()), new VectorWritable(entry.getValue().getVector()));
}
}
}
/**
* Run the job using supplied arguments as a Map/Reduce process
*
* @param conf
* the Configuration to use
* @param input
* the directory pathname for input points
* @param stateIn
* the directory pathname for input state
* @param stateOut
* the directory pathname for output state
* @param measure
* the DistanceMeasure to use
*/
private static void runIterationMR(Configuration conf, Path input, Path stateIn, Path stateOut,
DistanceMeasure measure) throws IOException, InterruptedException, ClassNotFoundException {
conf.set(STATE_IN_KEY, stateIn.toString());
conf.set(DISTANCE_MEASURE_KEY, measure.getClass().getName());
Job job = new Job(conf, "Representative Points Driver running over input: " + input);
job.setJarByClass(RepresentativePointsDriver.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(VectorWritable.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(WeightedVectorWritable.class);
FileInputFormat.setInputPaths(job, input);
FileOutputFormat.setOutputPath(job, stateOut);
job.setMapperClass(RepresentativePointsMapper.class);
job.setReducerClass(RepresentativePointsReducer.class);
job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
boolean succeeded = job.waitForCompletion(true);
if (!succeeded) {
throw new IllegalStateException("Job failed!");
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy