org.apache.mahout.math.decomposer.hebbian.HebbianUpdater Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-math Show documentation
Show all versions of mahout-math Show documentation
High performance scientific and technical computing data structures and methods,
mostly based on CERN's
Colt Java API
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.math.decomposer.hebbian;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.function.PlusMult;
public class HebbianUpdater implements EigenUpdater {
@Override
public void update(Vector pseudoEigen,
Vector trainingVector,
TrainingState currentState) {
double trainingVectorNorm = trainingVector.norm(2);
int numPreviousEigens = currentState.getNumEigensProcessed();
if (numPreviousEigens > 0 && currentState.isFirstPass()) {
updateTrainingProjectionsVector(currentState, trainingVector, numPreviousEigens - 1);
}
if (currentState.getActivationDenominatorSquared() == 0 || trainingVectorNorm == 0) {
if (currentState.getActivationDenominatorSquared() == 0) {
pseudoEigen.assign(trainingVector, new PlusMult(1));
currentState.setHelperVector(currentState.currentTrainingProjection().clone());
double helperNorm = currentState.getHelperVector().norm(2);
currentState.setActivationDenominatorSquared(trainingVectorNorm * trainingVectorNorm - helperNorm * helperNorm);
}
return;
}
currentState.setActivationNumerator(pseudoEigen.dot(trainingVector));
currentState.setActivationNumerator(
currentState.getActivationNumerator()
- currentState.getHelperVector().dot(currentState.currentTrainingProjection()));
double activation = currentState.getActivationNumerator()
/ Math.sqrt(currentState.getActivationDenominatorSquared());
currentState.setActivationDenominatorSquared(
currentState.getActivationDenominatorSquared()
+ 2 * activation * currentState.getActivationNumerator()
+ activation * activation
* (trainingVector.getLengthSquared() - currentState.currentTrainingProjection().getLengthSquared()));
if (numPreviousEigens > 0) {
currentState.getHelperVector().assign(currentState.currentTrainingProjection(), new PlusMult(activation));
}
pseudoEigen.assign(trainingVector, new PlusMult(activation));
}
private static void updateTrainingProjectionsVector(TrainingState state,
Vector trainingVector,
int previousEigenIndex) {
Vector previousEigen = state.mostRecentEigen();
Vector currentTrainingVectorProjection = state.currentTrainingProjection();
double projection = previousEigen.dot(trainingVector);
currentTrainingVectorProjection.set(previousEigenIndex, projection);
}
}