All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.mahout.math.function.Functions Maven / Gradle / Ivy

Go to download

High performance scientific and technical computing data structures and methods, mostly based on CERN's Colt Java API

There is a newer version: 0.13.0
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
Copyright 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/

package org.apache.mahout.math.function;


import com.google.common.base.Preconditions;
import org.apache.mahout.math.jet.random.engine.MersenneTwister;

import java.util.Date;


/**
 * Function objects to be passed to generic methods. Contains the functions of {@link java.lang.Math} as function
 * objects, as well as a few more basic functions. 

Function objects conveniently allow to express arbitrary functions * in a generic manner. Essentially, a function object is an object that can perform a function on some arguments. It * has a minimal interface: a method apply that takes the arguments, computes something and returns some result * value. Function objects are comparable to function pointers in C used for call-backs.

Unary functions are of type * {@link org.apache.mahout.math.function.DoubleFunction}, binary functions of type {@link * org.apache.mahout.math.function.DoubleDoubleFunction}. All can be retrieved via public static final * variables named after the function. Unary predicates are of type * {@link DoubleProcedure}, * binary predicates of type {@link org.apache.mahout.math.function.DoubleDoubleProcedure}. All can be retrieved via * public static final variables named isXXX. * *

Binary functions and predicates also exist as unary functions with the second argument being fixed to a constant. * These are generated and retrieved via factory methods (again with the same name as the function). Example:

    *
  • Functions.pow gives the function ab.
  • Functions.pow.apply(2,3)==8. *
  • Functions.pow(3) gives the function a3.
  • Functions.pow(3).apply(2)==8. *
More general, any binary function can be made an unary functions by fixing either the first or the second * argument. See methods {@link #bindArg1(org.apache.mahout.math.function.DoubleDoubleFunction ,double)} and {@link * #bindArg2(org.apache.mahout.math.function.DoubleDoubleFunction ,double)}. The order of arguments can * be swapped so that the first argument becomes the * second and vice-versa. See method {@link #swapArgs(org.apache.mahout.math.function.DoubleDoubleFunction)}. * Example:
  • Functions.pow * gives the function ab.
  • Functions.bindArg2(Functions.pow,3) gives the function * x3.
  • Functions.bindArg1(Functions.pow,3) gives the function 3x. *
  • Functions.swapArgs(Functions.pow) gives the function ba.

Even more * general, functions can be chained (composed, assembled). Assume we have two unary functions g and * h. The unary function g(h(a)) applying both in sequence can be generated via {@link * #chain(org.apache.mahout.math.function.DoubleFunction , org.apache.mahout.math.function.DoubleFunction)}: *

  • Functions.chain(g,h);
Assume further we have a binary * function f. The binary function g(f(a,b)) can be generated via {@link * #chain(org.apache.mahout.math.function.DoubleFunction , org.apache.mahout.math.function.DoubleDoubleFunction)}: *
  • Functions.chain(g,f);
The binary function * f(g(a),h(b)) can be generated via * {@link #chain(org.apache.mahout.math.function.DoubleDoubleFunction , org.apache.mahout.math.function.DoubleFunction , * org.apache.mahout.math.function.DoubleFunction)}:
    *
  • Functions.chain(f,g,h);
Arbitrarily complex functions can be composed from these building blocks. * For example sin(a) + cos2(b) can be specified as follows:
    *
  • chain(plus,sin,chain(square,cos));
or, of course, as *
 * new DoubleDoubleFunction() {
 *    public final double apply(double a, double b) { return Math.sin(a) + Math.pow(Math.cos(b),2); }
 * }
 * 
*

For aliasing see functions. Try this

*
 * // should yield 1.4399560356056456 in all cases
 * double a = 0.5;
 * double b = 0.2;
 * double v = Math.sin(a) + Math.pow(Math.cos(b),2);
 * log.info(v);
 * Functions F = Functions.functions;
 * DoubleDoubleFunction f = F.chain(F.plus,F.sin,F.chain(F.square,F.cos));
 * log.info(f.apply(a,b));
 * DoubleDoubleFunction g = new DoubleDoubleFunction() {
 *    public double apply(double a, double b) { return Math.sin(a) + Math.pow(Math.cos(b),2); }
 * };
 * log.info(g.apply(a,b));
 * 
*
* *

Performance

* * Surprise. Using modern non-adaptive JITs such as SunJDK 1.2.2 (java -classic) there seems to be no or only moderate * performance penalty in using function objects in a loop over traditional code in a loop. For complex nested function * objects (e.g. F.chain(F.abs,F.chain(F.plus,F.sin,F.chain(F.square,F.cos)))) the penalty is zero, for trivial * functions (e.g. F.plus) the penalty is often acceptable.
* Iteration Performance [million function evaluations per second]
Pentium * Pro 200 Mhz, SunJDK 1.2.2, NT, java -classic,
 

30000000 * iterations

3000000 iterations (10 times less)  
* F.plus a+b * F.chain(F.abs,F.chain(F.plus,F.sin,F.chain(F.square,F.cos))) * Math.abs(Math.sin(a) + Math.pow(Math.cos(b),2))    
  10.8 29.6 0.43 0.35    
*/ public final class Functions { /* *

Unary functions

*/ /** Function that returns Math.abs(a). */ public static final DoubleFunction ABS = new DoubleFunction() { @Override public double apply(double a) { return Math.abs(a); } }; /** Function that returns Math.acos(a). */ public static final DoubleFunction ACOS = new DoubleFunction() { @Override public double apply(double a) { return Math.acos(a); } }; /** Function that returns Math.asin(a). */ public static final DoubleFunction ASIN = new DoubleFunction() { @Override public double apply(double a) { return Math.asin(a); } }; /** Function that returns Math.atan(a). */ public static final DoubleFunction ATAN = new DoubleFunction() { @Override public double apply(double a) { return Math.atan(a); } }; /** Function that returns Math.ceil(a). */ public static final DoubleFunction CEIL = new DoubleFunction() { @Override public double apply(double a) { return Math.ceil(a); } }; /** Function that returns Math.cos(a). */ public static final DoubleFunction COS = new DoubleFunction() { @Override public double apply(double a) { return Math.cos(a); } }; /** Function that returns Math.exp(a). */ public static final DoubleFunction EXP = new DoubleFunction() { @Override public double apply(double a) { return Math.exp(a); } }; /** Function that returns Math.floor(a). */ public static final DoubleFunction FLOOR = new DoubleFunction() { @Override public double apply(double a) { return Math.floor(a); } }; /** Function that returns its argument. */ public static final DoubleFunction IDENTITY = new DoubleFunction() { @Override public double apply(double a) { return a; } }; /** Function that returns 1.0 / a. */ public static final DoubleFunction INV = new DoubleFunction() { @Override public double apply(double a) { return 1.0 / a; } }; /** Function that returns Math.log(a). */ public static final DoubleFunction LOGARITHM = new DoubleFunction() { @Override public double apply(double a) { return Math.log(a); } }; /** Function that returns Math.log(a) / Math.log(2). */ public static final DoubleFunction LOG2 = new DoubleFunction() { @Override public double apply(double a) { return Math.log(a) * 1.4426950408889634; } }; /** Function that returns -a. */ public static final DoubleFunction NEGATE = new DoubleFunction() { @Override public double apply(double a) { return -a; } }; /** Function that returns Math.rint(a). */ public static final DoubleFunction RINT = new DoubleFunction() { @Override public double apply(double a) { return Math.rint(a); } }; /** Function that returns a < 0 ? -1 : a > 0 ? 1 : 0. */ public static final DoubleFunction SIGN = new DoubleFunction() { @Override public double apply(double a) { return a < 0 ? -1 : a > 0 ? 1 : 0; } }; /** Function that returns Math.sin(a). */ public static final DoubleFunction SIN = new DoubleFunction() { @Override public double apply(double a) { return Math.sin(a); } }; /** Function that returns Math.sqrt(a). */ public static final DoubleFunction SQRT = new DoubleFunction() { @Override public double apply(double a) { return Math.sqrt(a); } }; /** Function that returns a * a. */ public static final DoubleFunction SQUARE = new DoubleFunction() { @Override public double apply(double a) { return a * a; } }; /** Function that returns 1 / (1 + exp(-a) */ public static final DoubleFunction SIGMOID = new DoubleFunction() { @Override public double apply(double a) { return 1.0 / (1.0 + Math.exp(-a)); } }; /** Function that returns a * (1-a) */ public static final DoubleFunction SIGMOIDGRADIENT = new DoubleFunction() { @Override public double apply(double a) { return a * (1.0 - a); } }; /** Function that returns Math.tan(a). */ public static final DoubleFunction TAN = new DoubleFunction() { @Override public double apply(double a) { return Math.tan(a); } }; /* *

Binary functions

*/ /** Function that returns Math.atan2(a,b). */ public static final DoubleDoubleFunction ATAN2 = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.atan2(a, b); } }; /** Function that returns a < b ? -1 : a > b ? 1 : 0. */ public static final DoubleDoubleFunction COMPARE = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return a < b ? -1 : a > b ? 1 : 0; } }; /** Function that returns a / b. */ public static final DoubleDoubleFunction DIV = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return a / b; } /** * x / 0 = infinity or undefined depending on x * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * 0 / y = 0 unless y = 0 * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * x / 0 = infinity or undefined depending on x * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * x / y != y / x * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return false; } /** * x / (y / z) = x * z / y * (x / y) / z = x / (y * z) * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; /** Function that returns a == b ? 1 : 0. */ public static final DoubleDoubleFunction EQUALS = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return a == b ? 1 : 0; } /** * x = y iff y = x * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } }; /** Function that returns a > b ? 1 : 0. */ public static final DoubleDoubleFunction GREATER = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return a > b ? 1 : 0; } }; /** Function that returns Math.IEEEremainder(a,b). */ public static final DoubleDoubleFunction IEEE_REMAINDER = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.IEEEremainder(a, b); } }; /** Function that returns a == b. */ public static final DoubleDoubleProcedure IS_EQUAL = new DoubleDoubleProcedure() { @Override public boolean apply(double a, double b) { return a == b; } }; /** Function that returns a < b. */ public static final DoubleDoubleProcedure IS_LESS = new DoubleDoubleProcedure() { @Override public boolean apply(double a, double b) { return a < b; } }; /** Function that returns a > b. */ public static final DoubleDoubleProcedure IS_GREATER = new DoubleDoubleProcedure() { @Override public boolean apply(double a, double b) { return a > b; } }; /** Function that returns a < b ? 1 : 0. */ public static final DoubleDoubleFunction LESS = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return a < b ? 1 : 0; } }; /** Function that returns Math.log(a) / Math.log(b). */ public static final DoubleDoubleFunction LG = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.log(a) / Math.log(b); } }; /** Function that returns Math.max(a,b). */ public static final DoubleDoubleFunction MAX = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.max(a, b); } /** * max(x, 0) = x or 0 depending on the sign of x * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * max(0, y) = y or 0 depending on the sign of y * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * max(x, 0) = x or 0 depending on the sign of x * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * max(x, max(y, z)) = max(max(x, y), z) * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return true; } /** * max(x, y) = max(y, x) * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } }; public static final DoubleDoubleFunction MAX_ABS = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.max(Math.abs(a), Math.abs(b)); } /** * max(|x|, 0) = |x| * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return true; } /** * max(0, |y|) = |y| * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * max(|x|, 0) = |x| * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * max(|x|, max(|y|, |z|)) = max(max(|x|, |y|), |z|) * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return true; } /** * max(|x|, |y|) = max(|y\, |x\) * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } }; /** Function that returns Math.min(a,b). */ public static final DoubleDoubleFunction MIN = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.min(a, b); } /** * min(x, 0) = x or 0 depending on the sign of x * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * min(0, y) = y or 0 depending on the sign of y * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * min(x, 0) = x or 0 depending on the sign of x * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * min(x, min(y, z)) = min(min(x, y), z) * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return true; } /** * min(x, y) = min(y, x) * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } }; /** Function that returns a - b. */ public static final DoubleDoubleFunction MINUS = plusMult(-1); public static final DoubleDoubleFunction MINUS_SQUARED = new DoubleDoubleFunction() { @Override public double apply(double x, double y) { return (x - y) * (x - y); } /** * (x - 0)^2 = x^2 != x * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * (0 - y)^2 != 0 * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * (x - 0)^2 != x * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * (x - y)^2 = (y - x)^2 * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } /** * (x - (y - z)^2)^2 != ((x - y)^2 - z)^2 * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; /** Function that returns a % b. */ public static final DoubleDoubleFunction MOD = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return a % b; } }; /** Function that returns a * b. */ public static final DoubleDoubleFunction MULT = new TimesFunction(); /** Function that returns a + b. */ public static final DoubleDoubleFunction PLUS = plusMult(1); /** Function that returns Math.abs(a) + Math.abs(b). */ public static final DoubleDoubleFunction PLUS_ABS = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.abs(a) + Math.abs(b); } /** * abs(x) + abs(0) = abs(x) != x * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * abs(0) + abs(y) = abs(y) != 0 unless y = 0 * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * abs(x) + abs(0) = abs(x) != 0 unless x = 0 * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * abs(x) + abs(abs(y) + abs(z)) = abs(x) + abs(y) + abs(z) * abs(abs(x) + abs(y)) + abs(z) = abs(x) + abs(y) + abs(z) * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return true; } /** * abs(x) + abs(y) = abs(y) + abs(x) * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } }; public static final DoubleDoubleFunction MINUS_ABS = new DoubleDoubleFunction() { @Override public double apply(double x, double y) { return Math.abs(x - y); } /** * |x - 0| = |x| * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * |0 - y| = |y| * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * |x - 0| = |x| * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * |x - y| = |y - x| * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } /** * |x - |y - z|| != ||x - y| - z| (|5 - |4 - 3|| = 1; ||5 - 4| - 3| = |1 - 3| = 2) * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; /** Function that returns Math.pow(a,b). */ public static final DoubleDoubleFunction POW = new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return Math.pow(a, b); } /** * x^0 = 1 for any x unless x = 0 (undefined) * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * 0^y = 0 for any y unless y = 0 (undefined, but Math.pow(0, 0) = 1) * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * x^0 = 1 for any x (even x = 0) * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * x^y != y^x (2^3 != 3^2) * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return false; } /** * x^(y^z) != (x^y)^z ((2^3)^4 = 8^4 = 2^12 != 2^(3^4) = 2^81) * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; public static final DoubleDoubleFunction SECOND = new DoubleDoubleFunction() { @Override public double apply(double x, double y) { return y; } /** * f(x, 0) = x for any x * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * f(0, y) = y for any y * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * f(x, 0) = 0 for any x * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return true; } /** * f(x, y) = x != y = f(y, x) for any x, y unless x = y * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return false; } /** * f(x, f(y, z)) = f(x, z) = z * f(f(x, y), z) = z * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return true; } }; /** * This function is specifically designed to be used when assigning a vector to one that is all zeros (created * by like()). It enables iteration only through the nonzeros of the right hand side by declaring isLikeRightPlus * to be true. This is NOT generally true for SECOND (hence the other function above). */ public static final DoubleDoubleFunction SECOND_LEFT_ZERO = new DoubleDoubleFunction() { @Override public double apply(double x, double y) { Preconditions.checkArgument(x == 0, "This special version of SECOND needs x == 0"); return y; } /** * f(x, 0) = 0 for any x; we're only assigning to left hand sides that are strictly 0 * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return true; } /** * f(0, y) = y for any y * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * f(x, 0) = 0 for any x * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return true; } /** * f(x, y) = x != y = f(y, x) for any x, y unless x = y * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return false; } /** * f(x, f(y, z)) = f(x, z) = z * f(f(x, y), z) = z * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return true; } }; public static final DoubleDoubleFunction MULT_SQUARE_LEFT = new DoubleDoubleFunction() { @Override public double apply(double x, double y) { return x * x * y; } /** * x * x * 0 = 0 * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * 0 * 0 * y = 0 * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return true; } /** * x * x * 0 = 0 * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return true; } /** * x * x * y != y * y * x * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return false; } /** * x * x * y * y * z != x * x * y * x * x * y * z * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; public static final DoubleDoubleFunction MULT_RIGHT_PLUS1 = new DoubleDoubleFunction() { /** * Apply the function to the arguments and return the result * * @param x a double for the first argument * @param y a double for the second argument * @return the result of applying the function */ @Override public double apply(double x, double y) { return x * (y + 1); } /** * x * 1 = x * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return true; } /** * 0 * y = 0 * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return true; } /** * x * 1 = x != 0 * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * x * (y + 1) != y * (x + 1) * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return false; } /** * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; public static DoubleDoubleFunction reweigh(final double wx, final double wy) { final double tw = wx + wy; return new DoubleDoubleFunction() { @Override public double apply(double x, double y) { return (wx * x + wy * y) / tw; } /** * f(x, 0) = wx * x / tw = x iff wx = tw (practically, impossible, as tw = wx + wy and wy > 0) * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return wx == tw; } /** * f(0, y) = wy * y / tw = 0 iff y = 0 * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * f(x, 0) = wx * x / tw = 0 iff x = 0 * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * wx * x + wy * y = wx * y + wy * x iff wx = wy * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return wx == wy; } /** * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; } private Functions() { } /** * Constructs a function that returns (from<=a && a<=to) ? 1 : 0. a is a variable, from and * to are fixed. */ public static DoubleFunction between(final double from, final double to) { return new DoubleFunction() { @Override public double apply(double a) { return from <= a && a <= to ? 1 : 0; } }; } /** * Constructs a unary function from a binary function with the first operand (argument) fixed to the given constant * c. The second operand is variable (free). * * @param function a binary function taking operands in the form function.apply(c,var). * @return the unary function function(c,var). */ public static DoubleFunction bindArg1(final DoubleDoubleFunction function, final double c) { return new DoubleFunction() { @Override public double apply(double var) { return function.apply(c, var); } }; } /** * Constructs a unary function from a binary function with the second operand (argument) fixed to the given constant * c. The first operand is variable (free). * * @param function a binary function taking operands in the form function.apply(var,c). * @return the unary function function(var,c). */ public static DoubleFunction bindArg2(final DoubleDoubleFunction function, final double c) { return new DoubleFunction() { @Override public double apply(double var) { return function.apply(var, c); } }; } /** * Constructs the function f( g(a), h(b) ). * * @param f a binary function. * @param g a unary function. * @param h a unary function. * @return the binary function f( g(a), h(b) ). */ public static DoubleDoubleFunction chain(final DoubleDoubleFunction f, final DoubleFunction g, final DoubleFunction h) { return new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return f.apply(g.apply(a), h.apply(b)); } /** * fx(c, 0) = f(g(x), h(0)) = f(g(x), 0) = g(x) = x if h(0) = 0 and f isLikeRightPlus and g(x) = x * Impossible to check whether g(x) = x for any x, so we return false. * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * fc(0, y) = f(g(0), h(y)) = f(0, h(y)) = 0 if g(0) = 0 and f isLikeLeftMult * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return g.apply(0) == 0 && f.isLikeLeftMult(); } /** * fc(x, 0) = f(g(x), h(0)) = f(g(x), 0) = 0 if h(0) = 0 and f isLikeRightMult * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return h.apply(0) == 0 && f.isLikeRightMult(); } /** * fc(x, y) = f(g(x), h(y)) = f(h(y), g(x)) * fc(y, x) = f(g(y), h(x)) = f(h(x), g(y)) * Either g(x) = g(y) for any x, y and h(x) = h(y) for any x, y or g = h and f isCommutative. * Can only check if g = h (reference equality, assuming they're both the same static function in * this file) and f isCommutative. There are however other scenarios when this might happen that are NOT * covered by this definition. * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return g.equals(h) && f.isCommutative(); } /** * fc(x, fc(y, z)) = f(g(x), h(f(g(y), h(z)))) * fc(fc(x, y), z) = f(g(f(g(x), h(y))), h(z)) * Impossible to check. * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; } /** * Constructs the function g( h(a,b) ). * * @param g a unary function. * @param h a binary function. * @return the binary function g( h(a,b) ). */ public static DoubleDoubleFunction chain(final DoubleFunction g, final DoubleDoubleFunction h) { return new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return g.apply(h.apply(a, b)); } /** * g(h(x, 0)) = g(x) = x for any x iff g(x) = x and h isLikeRightPlus * Impossible to check. * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * g(h(0, y)) = g(0) = 0 for any y iff g(0) = 0 and h isLikeLeftMult * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return !g.isDensifying() && h.isLikeLeftMult(); } /** * g(h(x, 0)) = g(0) = 0 for any x iff g(0) = 0 and h isLikeRightMult * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return !g.isDensifying() && h.isLikeRightMult(); } /** * fc(x, y) = g(h(x, y)) = g(h(y, x)) = fc(y, x) iff h isCommutative * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return h.isCommutative(); } /** * fc(x, fc(y, z)) = g(h(x, g(h(y, z))) * fc(fc(x, y), z) = g(h(g(h(x, y)), z)) * Impossible to check. * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; } /** * Constructs the function g( h(a) ). * * @param g a unary function. * @param h a unary function. * @return the unary function g( h(a) ). */ public static DoubleFunction chain(final DoubleFunction g, final DoubleFunction h) { return new DoubleFunction() { @Override public double apply(double a) { return g.apply(h.apply(a)); } }; } /** * Constructs the function g( h(a) ). * * @param g a unary function. * @param h an {@link IntIntFunction} function. * @return the unary function g( h(a) ). */ public static IntIntFunction chain(final DoubleFunction g, final IntIntFunction h) { return new IntIntFunction() { @Override public double apply(int first, int second) { return g.apply(h.apply(first, second)); } }; } /** * Constructs a function that returns a < b ? -1 : a > b ? 1 : 0. a is a variable, b is * fixed. */ public static DoubleFunction compare(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return a < b ? -1 : a > b ? 1 : 0; } }; } /** Constructs a function that returns the constant c. */ public static DoubleFunction constant(final double c) { return new DoubleFunction() { @Override public double apply(double a) { return c; } }; } /** Constructs a function that returns a / b. a is a variable, b is fixed. */ public static DoubleFunction div(double b) { return mult(1 / b); } /** Constructs a function that returns a == b ? 1 : 0. a is a variable, b is fixed. */ public static DoubleFunction equals(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return a == b ? 1 : 0; } }; } /** Constructs a function that returns a != b ? 1 : 0. a is a variable, b is fixed. */ public static DoubleFunction notEqual(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return a != b ? 1 : 0; } }; } /** Constructs a function that returns a > b ? 1 : 0. a is a variable, b is fixed. */ public static DoubleFunction greater(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return a > b ? 1 : 0; } }; } /** * Constructs a function that returns Math.IEEEremainder(a,b). a is a variable, b is * fixed. */ public static DoubleFunction mathIEEEremainder(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return Math.IEEEremainder(a, b); } }; } /** * Constructs a function that returns from<=a && a<=to. a is a variable, from and * to are fixed. * * Note that DoubleProcedure is generated code and thus looks like an invalid reference unless you can see * the generated stuff. */ public static DoubleProcedure isBetween(final double from, final double to) { return new DoubleProcedure() { @Override public boolean apply(double a) { return from <= a && a <= to; } }; } /** Constructs a function that returns a == b. a is a variable, b is fixed. */ public static DoubleProcedure isEqual(final double b) { return new DoubleProcedure() { @Override public boolean apply(double a) { return a == b; } }; } /** Constructs a function that returns a > b. a is a variable, b is fixed. */ public static DoubleProcedure isGreater(final double b) { return new DoubleProcedure() { @Override public boolean apply(double a) { return a > b; } }; } /** Constructs a function that returns a < b. a is a variable, b is fixed. */ public static DoubleProcedure isLess(final double b) { return new DoubleProcedure() { @Override public boolean apply(double a) { return a < b; } }; } /** Constructs a function that returns a < b ? 1 : 0. a is a variable, b is fixed. */ public static DoubleFunction less(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return a < b ? 1 : 0; } }; } /** * Constructs a function that returns Math.log(a) / Math.log(b). a is a variable, * b is fixed. */ public static DoubleFunction lg(final double b) { return new DoubleFunction() { private final double logInv = 1 / Math.log(b); // cached for speed @Override public double apply(double a) { return Math.log(a) * logInv; } }; } /** Constructs a function that returns Math.max(a,b). a is a variable, b is fixed. */ public static DoubleFunction max(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return Math.max(a, b); } }; } /** Constructs a function that returns Math.min(a,b). a is a variable, b is fixed. */ public static DoubleFunction min(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return Math.min(a, b); } }; } /** Constructs a function that returns a - b. a is a variable, b is fixed. */ public static DoubleFunction minus(double b) { return plus(-b); } /** * Constructs a function that returns a - b*constant. a and b are variables, * constant is fixed. */ public static DoubleDoubleFunction minusMult(double constant) { return plusMult(-constant); } /** Constructs a function that returns a % b. a is a variable, b is fixed. */ public static DoubleFunction mod(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return a % b; } }; } /** Constructs a function that returns a * b. a is a variable, b is fixed. */ public static DoubleFunction mult(double b) { return new Mult(b); /* return new DoubleFunction() { public final double apply(double a) { return a * b; } }; */ } /** Constructs a function that returns a + b. a is a variable, b is fixed. */ public static DoubleFunction plus(final double b) { return new DoubleFunction() { @Override public double apply(double a) { return a + b; } }; } /** * Constructs a function that returns a + b*constant. a and b are variables, * constant is fixed. */ public static DoubleDoubleFunction plusMult(double constant) { return new PlusMult(constant); } /** Constructs a function that returns Math.pow(a,b). a is a variable, b is fixed. */ public static DoubleFunction pow(final double b) { return new DoubleFunction() { @Override public double apply(double a) { if (b == 2) { return a * a; } else { return Math.pow(a, b); } } }; } /** * Constructs a function that returns a new uniform random number in the open unit interval {@code (0.0,1.0)} * (excluding 0.0 and 1.0). Currently the engine is {@link MersenneTwister} and is * seeded with the current time.

Note that any random engine derived from {@link * org.apache.mahout.math.jet.random.engine.RandomEngine} and any random distribution derived from {@link * org.apache.mahout.math.jet.random.AbstractDistribution} are function objects, because they implement the proper * interfaces. Thus, if you are not happy with the default, just pass your favourite random generator to function * evaluating methods. */ public static DoubleFunction random() { return new MersenneTwister(new Date()); } /** * Constructs a function that returns the number rounded to the given precision; * Math.rint(a/precision)*precision. Examples: *

   * precision = 0.01 rounds 0.012 --> 0.01, 0.018 --> 0.02
   * precision = 10   rounds 123   --> 120 , 127   --> 130
   * 
*/ public static DoubleFunction round(final double precision) { return new DoubleFunction() { @Override public double apply(double a) { return Math.rint(a / precision) * precision; } }; } /** * Constructs a function that returns function.apply(b,a), i.e. applies the function with the first operand * as second operand and the second operand as first operand. * * @param function a function taking operands in the form function.apply(a,b). * @return the binary function function(b,a). */ public static DoubleDoubleFunction swapArgs(final DoubleDoubleFunction function) { return new DoubleDoubleFunction() { @Override public double apply(double a, double b) { return function.apply(b, a); } }; } public static DoubleDoubleFunction minusAbsPow(final double exponent) { return new DoubleDoubleFunction() { @Override public double apply(double x, double y) { return Math.pow(Math.abs(x - y), exponent); } /** * |x - 0|^p = |x|^p != x unless x > 0 and p = 1 * @return true iff f(x, 0) = x for any x */ @Override public boolean isLikeRightPlus() { return false; } /** * |0 - y|^p = |y|^p * @return true iff f(0, y) = 0 for any y */ @Override public boolean isLikeLeftMult() { return false; } /** * |x - 0|^p = |x|^p * @return true iff f(x, 0) = 0 for any x */ @Override public boolean isLikeRightMult() { return false; } /** * |x - y|^p = |y - x|^p * @return true iff f(x, y) = f(y, x) for any x, y */ @Override public boolean isCommutative() { return true; } /** * |x - |y - z|^p|^p != ||x - y|^p - z|^p * @return true iff f(x, f(y, z)) = f(f(x, y), z) for any x, y, z */ @Override public boolean isAssociative() { return false; } }; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy