All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.mahout.math.CholeskyDecomposition Maven / Gradle / Ivy

Go to download

High performance scientific and technical computing data structures and methods, mostly based on CERN's Colt Java API

There is a newer version: 0.13.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.math;

import com.google.common.base.Preconditions;
import org.apache.mahout.math.function.Functions;

/**
 * Cholesky decomposition shamelessly ported from JAMA.
 * 

* A Cholesky decomposition of a semi-positive definite matrix A is a lower triangular matrix L such * that L L^* = A. If A is full rank, L is unique. If A is real, then it must be symmetric and R * will also be real. */ public class CholeskyDecomposition { private final PivotedMatrix L; private boolean isPositiveDefinite = true; public CholeskyDecomposition(Matrix a) { this(a, true); } public CholeskyDecomposition(Matrix a, boolean pivot) { int rows = a.rowSize(); L = new PivotedMatrix(new DenseMatrix(rows, rows)); // must be square Preconditions.checkArgument(rows == a.columnSize(), "Must be a Square Matrix"); if (pivot) { decomposeWithPivoting(a); } else { decompose(a); } } private void decomposeWithPivoting(Matrix a) { int n = a.rowSize(); L.assign(a); // pivoted column-wise submatrix cholesky with simple pivoting double uberMax = L.viewDiagonal().aggregate(Functions.MAX, Functions.ABS); for (int k = 0; k < n; k++) { double max = 0; int pivot = k; for (int j = k; j < n; j++) { if (L.get(j, j) > max) { max = L.get(j, j); pivot = j; if (uberMax < Math.abs(max)) { uberMax = Math.abs(max); } } } L.swap(k, pivot); double akk = L.get(k, k); double epsilon = 1.0e-10 * Math.max(uberMax, L.viewColumn(k).aggregate(Functions.MAX, Functions.ABS)); if (akk < -epsilon) { // can't have decidedly negative element on diagonal throw new IllegalArgumentException("Matrix is not positive semi-definite"); } else if (akk <= epsilon) { // degenerate column case. Set all to zero L.viewColumn(k).assign(0); isPositiveDefinite = false; // no need to subtract from remaining sub-matrix } else { // normalize column by diagonal element akk = Math.sqrt(Math.max(0, akk)); L.viewColumn(k).viewPart(k, n - k).assign(Functions.div(akk)); L.viewColumn(k).viewPart(0, k).assign(0); // subtract off scaled version of this column to the right for (int j = k + 1; j < n; j++) { Vector columnJ = L.viewColumn(j).viewPart(k, n - k); Vector columnK = L.viewColumn(k).viewPart(k, n - k); columnJ.assign(columnK, Functions.minusMult(columnK.get(j - k))); } } } } private void decompose(Matrix a) { int n = a.rowSize(); L.assign(a); // column-wise submatrix cholesky with simple pivoting for (int k = 0; k < n; k++) { double akk = L.get(k, k); // set upper part of column to 0. L.viewColumn(k).viewPart(0, k).assign(0); double epsilon = 1.0e-10 * L.viewColumn(k).aggregate(Functions.MAX, Functions.ABS); if (akk <= epsilon) { // degenerate column case. Set diagonal to 1, all others to zero L.viewColumn(k).viewPart(k, n - k).assign(0); isPositiveDefinite = false; // no need to subtract from remaining sub-matrix } else { // normalize column by diagonal element akk = Math.sqrt(Math.max(0, akk)); L.set(k, k, akk); L.viewColumn(k).viewPart(k + 1, n - k - 1).assign(Functions.div(akk)); // now subtract scaled version of column for (int j = k + 1; j < n; j++) { Vector columnJ = L.viewColumn(j).viewPart(j, n - j); Vector columnK = L.viewColumn(k).viewPart(j, n - j); columnJ.assign(columnK, Functions.minusMult(L.get(j, k))); } } } } public boolean isPositiveDefinite() { return isPositiveDefinite; } public Matrix getL() { return L.getBase(); } public PivotedMatrix getPermutedL() { return L; } /** * @return Returns the permutation of rows and columns that was applied to L */ public int[] getPivot() { return L.getRowPivot(); } public int[] getInversePivot() { return L.getInverseRowPivot(); } /** * Compute inv(L) * z efficiently. * * @param z */ public Matrix solveLeft(Matrix z) { int n = L.columnSize(); int nx = z.columnSize(); Matrix X = new DenseMatrix(n, z.columnSize()); X.assign(z); // Solve L*Y = Z using back-substitution // note that k and i have to go in a funny order because L is pivoted for (int internalK = 0; internalK < n; internalK++) { int k = L.rowUnpivot(internalK); for (int j = 0; j < nx; j++) { for (int internalI = 0; internalI < internalK; internalI++) { int i = L.rowUnpivot(internalI); X.set(k, j, X.get(k, j) - X.get(i, j) * L.get(k, i)); } if (L.get(k, k) != 0) { X.set(k, j, X.get(k, j) / L.get(k, k)); } else { X.set(k, j, 0); } } } return X; } /** * Compute z * inv(L') efficiently */ public Matrix solveRight(Matrix z) { int n = z.columnSize(); int nx = z.rowSize(); Matrix x = new DenseMatrix(z.rowSize(), z.columnSize()); x.assign(z); // Solve Y*L' = Z using back-substitution for (int internalK = 0; internalK < n; internalK++) { int k = L.rowUnpivot(internalK); for (int j = 0; j < nx; j++) { for (int internalI = 0; internalI < k; internalI++) { int i = L.rowUnpivot(internalI); x.set(j, k, x.get(j, k) - x.get(j, i) * L.get(k, i)); if (Double.isInfinite(x.get(j, k)) || Double.isNaN(x.get(j, k))) { throw new IllegalStateException( String.format("Invalid value found at %d,%d (should not be possible)", j, k)); } } if (L.get(k, k) != 0) { x.set(j, k, x.get(j, k) / L.get(k, k)); } else { x.set(j, k, 0); } if (Double.isInfinite(x.get(j, k)) || Double.isNaN(x.get(j, k))) { throw new IllegalStateException(String.format("Invalid value found at %d,%d (should not be possible)", j, k)); } } } return x; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy