org.apache.mahout.math.map.OpenFloatObjectHashMap Maven / Gradle / Ivy
Show all versions of mahout-math Show documentation
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
Copyright � 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package org.apache.mahout.math.map;
import java.util.Arrays;
import java.util.List;
import org.apache.mahout.math.function.FloatObjectProcedure;
import org.apache.mahout.math.function.FloatProcedure;
import org.apache.mahout.math.list.FloatArrayList;
public class OpenFloatObjectHashMap extends AbstractFloatObjectMap {
private static final byte FREE = 0;
private static final byte FULL = 1;
private static final byte REMOVED = 2;
/** The hash table keys. */
private float[] table;
/** The hash table values. */
private T[] values;
/** The state of each hash table entry (FREE, FULL, REMOVED). */
private byte[] state;
/** The number of table entries in state==FREE. */
private int freeEntries;
/** Constructs an empty map with default capacity and default load factors. */
public OpenFloatObjectHashMap() {
this(DEFAULT_CAPACITY);
}
/**
* Constructs an empty map with the specified initial capacity and default load factors.
*
* @param initialCapacity the initial capacity of the map.
* @throws IllegalArgumentException if the initial capacity is less than zero.
*/
public OpenFloatObjectHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_MIN_LOAD_FACTOR, DEFAULT_MAX_LOAD_FACTOR);
}
/**
* Constructs an empty map with the specified initial capacity and the specified minimum and maximum load factor.
*
* @param initialCapacity the initial capacity.
* @param minLoadFactor the minimum load factor.
* @param maxLoadFactor the maximum load factor.
* @throws IllegalArgumentException if initialCapacity < 0 || (minLoadFactor < 0.0 || minLoadFactor >= 1.0) ||
* (maxLoadFactor <= 0.0 || maxLoadFactor >= 1.0) || (minLoadFactor >=
* maxLoadFactor).
*/
public OpenFloatObjectHashMap(int initialCapacity, double minLoadFactor, double maxLoadFactor) {
setUp(initialCapacity, minLoadFactor, maxLoadFactor);
}
/** Removes all (key,value) associations from the receiver. Implicitly calls trimToSize(). */
@Override
public void clear() {
Arrays.fill(state, FREE);
Arrays.fill(values, null); // delta
this.distinct = 0;
this.freeEntries = table.length; // delta
trimToSize();
}
/**
* Returns a deep copy of the receiver.
*
* @return a deep copy of the receiver.
*/
@SuppressWarnings("unchecked")
@Override
public OpenFloatObjectHashMap clone() {
OpenFloatObjectHashMap copy = (OpenFloatObjectHashMap) super.clone();
copy.table = copy.table.clone();
copy.values = copy.values.clone();
copy.state = copy.state.clone();
return copy;
}
/**
* Returns true if the receiver contains the specified key.
*
* @return true if the receiver contains the specified key.
*/
@Override
public boolean containsKey(float key) {
return indexOfKey(key) >= 0;
}
/**
* Returns true if the receiver contains the specified value.
*
* @return true if the receiver contains the specified value.
*/
@Override
public boolean containsValue(T value) {
return indexOfValue(value) >= 0;
}
/**
* Ensures that the receiver can hold at least the specified number of associations without needing to allocate new
* internal memory. If necessary, allocates new internal memory and increases the capacity of the receiver. This
* method never need be called; it is for performance tuning only. Calling this method before put()ing a
* large number of associations boosts performance, because the receiver will grow only once instead of potentially
* many times and hash collisions get less probable.
*
* @param minCapacity the desired minimum capacity.
*/
@Override
public void ensureCapacity(int minCapacity) {
if (table.length < minCapacity) {
int newCapacity = nextPrime(minCapacity);
rehash(newCapacity);
}
}
/**
* Applies a procedure to each key of the receiver, if any. Note: Iterates over the keys in no particular order.
* Subclasses can define a particular order, for example, "sorted by key". All methods which can be expressed
* in terms of this method (most methods can) must guarantee to use the same order defined by this
* method, even if it is no particular order. This is necessary so that, for example, methods keys and
* values will yield association pairs, not two uncorrelated lists.
*
* @param procedure the procedure to be applied. Stops iteration if the procedure returns false, otherwise
* continues.
* @return false if the procedure stopped before all keys where iterated over, true otherwise.
*/
@Override
public boolean forEachKey(FloatProcedure procedure) {
for (int i = table.length; i-- > 0;) {
if (state[i] == FULL && !procedure.apply(table[i])) {
return false;
}
}
return true;
}
/**
* Applies a procedure to each (key,value) pair of the receiver, if any. Iteration order is guaranteed to be
* identical to the order used by method {@link #forEachKey(FloatProcedure)}.
*
* @param procedure the procedure to be applied. Stops iteration if the procedure returns false, otherwise
* continues.
* @return false if the procedure stopped before all keys where iterated over, true otherwise.
*/
@Override
public boolean forEachPair(FloatObjectProcedure procedure) {
for (int i = table.length; i-- > 0;) {
if (state[i] == FULL && !procedure.apply(table[i], values[i])) {
return false;
}
}
return true;
}
/**
* Returns the value associated with the specified key. It is often a good idea to first check with
* containsKey(float) whether the given key has a value associated or not, i.e. whether there exists an association
* for the given key or not.
*
* @param key the key to be searched for.
* @return the value associated with the specified key; null if no such key is present.
*/
@Override
public T get(float key) {
final int i = indexOfKey(key);
if (i < 0) {
return null;
} //not contained
return values[i];
}
/**
* @param key the key to be added to the receiver.
* @return the index where the key would need to be inserted, if it is not already contained. Returns -index-1 if the
* key is already contained at slot index. Therefore, if the returned index < 0, then it is already contained
* at slot -index-1. If the returned index >= 0, then it is NOT already contained and should be inserted at
* slot index.
*/
protected int indexOfInsertion(float key) {
final int length = table.length;
final int hash = HashFunctions.hash(key) & 0x7FFFFFFF;
int i = hash % length;
int decrement = hash % (length - 2); // double hashing, see http://www.eece.unm.edu/faculty/heileman/hash/node4.html
//int decrement = (hash / length) % length;
if (decrement == 0) {
decrement = 1;
}
// stop if we find a removed or free slot, or if we find the key itself
// do NOT skip over removed slots (yes, open addressing is like that...)
while (state[i] == FULL && table[i] != key) {
i -= decrement;
//hashCollisions++;
if (i < 0) {
i += length;
}
}
if (state[i] == REMOVED) {
// stop if we find a free slot, or if we find the key itself.
// do skip over removed slots (yes, open addressing is like that...)
// assertion: there is at least one FREE slot.
final int j = i;
while (state[i] != FREE && (state[i] == REMOVED || table[i] != key)) {
i -= decrement;
//hashCollisions++;
if (i < 0) {
i += length;
}
}
if (state[i] == FREE) {
i = j;
}
}
if (state[i] == FULL) {
// key already contained at slot i.
// return a negative number identifying the slot.
return -i - 1;
}
// not already contained, should be inserted at slot i.
// return a number >= 0 identifying the slot.
return i;
}
/**
* @param key the key to be searched in the receiver.
* @return the index where the key is contained in the receiver, returns -1 if the key was not found.
*/
protected int indexOfKey(float key) {
final int length = table.length;
final int hash = HashFunctions.hash(key) & 0x7FFFFFFF;
int i = hash % length;
int decrement = hash % (length - 2); // double hashing, see http://www.eece.unm.edu/faculty/heileman/hash/node4.html
//int decrement = (hash / length) % length;
if (decrement == 0) {
decrement = 1;
}
// stop if we find a free slot, or if we find the key itself.
// do skip over removed slots (yes, open addressing is like that...)
while (state[i] != FREE && (state[i] == REMOVED || table[i] != key)) {
i -= decrement;
//hashCollisions++;
if (i < 0) {
i += length;
}
}
if (state[i] == FREE) {
return -1;
} // not found
return i; //found, return index where key is contained
}
/**
* @param value the value to be searched in the receiver.
* @return the index where the value is contained in the receiver, returns -1 if the value was not found.
*/
protected int indexOfValue(T value) {
T[] val = values;
byte[] stat = state;
for (int i = stat.length; --i >= 0;) {
if (stat[i] == FULL && val[i] == value) {
return i;
}
}
return -1; // not found
}
/**
* Fills all keys contained in the receiver into the specified list. Fills the list, starting at index 0. After this
* call returns the specified list has a new size that equals this.size(). Iteration order is guaranteed to
* be identical to the order used by method {@link #forEachKey(FloatProcedure)}. This method can be used to
* iterate over the keys of the receiver.
*
* @param list the list to be filled, can have any size.
*/
@Override
public void keys(FloatArrayList list) {
list.setSize(distinct);
float[] elements = list.elements();
int j = 0;
for (int i = table.length; i-- > 0;) {
if (state[i] == FULL) {
elements[j++] = table[i];
}
}
}
/**
* Fills all pairs satisfying a given condition into the specified lists. Fills into the lists, starting at index 0.
* After this call returns the specified lists both have a new size, the number of pairs satisfying the condition.
* Iteration order is guaranteed to be identical to the order used by method {@link #forEachKey(FloatProcedure)}.
*
Example:
*
* FloatObjectProcedure condition = new FloatObjectProcedure() { // match even keys only
* public boolean apply(float key, Object value) { return key%2==0; }
* }
* keys = (8,7,6), values = (1,2,2) --> keyList = (6,8), valueList = (2,1)
*
*
* @param condition the condition to be matched. Takes the current key as first and the current value as second
* argument.
* @param keyList the list to be filled with keys, can have any size.
* @param valueList the list to be filled with values, can have any size.
*/
@Override
public void pairsMatching(FloatObjectProcedure condition,
FloatArrayList keyList,
List valueList) {
keyList.clear();
valueList.clear();
for (int i = table.length; i-- > 0;) {
if (state[i] == FULL && condition.apply(table[i], values[i])) {
keyList.add(table[i]);
valueList.add(values[i]);
}
}
}
/**
* Associates the given key with the given value. Replaces any old (key,someOtherValue) association, if
* existing.
*
* @param key the key the value shall be associated with.
* @param value the value to be associated.
* @return true if the receiver did not already contain such a key; false if the receiver did
* already contain such a key - the new value has now replaced the formerly associated value.
*/
@Override
public boolean put(float key, T value) {
int i = indexOfInsertion(key);
if (i < 0) { //already contained
i = -i - 1;
this.values[i] = value;
return false;
}
if (this.distinct > this.highWaterMark) {
int newCapacity = chooseGrowCapacity(this.distinct + 1, this.minLoadFactor, this.maxLoadFactor);
rehash(newCapacity);
return put(key, value);
}
this.table[i] = key;
this.values[i] = value;
if (this.state[i] == FREE) {
this.freeEntries--;
}
this.state[i] = FULL;
this.distinct++;
if (this.freeEntries < 1) { //delta
int newCapacity = chooseGrowCapacity(this.distinct + 1, this.minLoadFactor, this.maxLoadFactor);
rehash(newCapacity);
}
return true;
}
/**
* Rehashes the contents of the receiver into a new table with a smaller or larger capacity. This method is called
* automatically when the number of keys in the receiver exceeds the high water mark or falls below the low water
* mark.
*/
@SuppressWarnings("unchecked")
protected void rehash(int newCapacity) {
int oldCapacity = table.length;
//if (oldCapacity == newCapacity) return;
float[] oldTable = table;
T[] oldValues = values;
byte[] oldState = state;
this.table = new float[newCapacity];
this.values = (T[]) new Object[newCapacity];
this.state = new byte[newCapacity];
this.lowWaterMark = chooseLowWaterMark(newCapacity, this.minLoadFactor);
this.highWaterMark = chooseHighWaterMark(newCapacity, this.maxLoadFactor);
this.freeEntries = newCapacity - this.distinct; // delta
for (int i = oldCapacity; i-- > 0;) {
if (oldState[i] == FULL) {
float element = oldTable[i];
int index = indexOfInsertion(element);
this.table[index] = element;
this.values[index] = oldValues[i];
this.state[index] = FULL;
}
}
}
/**
* Removes the given key with its associated element from the receiver, if present.
*
* @param key the key to be removed from the receiver.
* @return true if the receiver contained the specified key, false otherwise.
*/
@Override
public boolean removeKey(float key) {
int i = indexOfKey(key);
if (i < 0) {
return false;
} // key not contained
this.state[i] = REMOVED;
this.values[i] = null; // delta
this.distinct--;
if (this.distinct < this.lowWaterMark) {
int newCapacity = chooseShrinkCapacity(this.distinct, this.minLoadFactor, this.maxLoadFactor);
rehash(newCapacity);
}
return true;
}
/**
* Initializes the receiver.
*
* @param initialCapacity the initial capacity of the receiver.
* @param minLoadFactor the minLoadFactor of the receiver.
* @param maxLoadFactor the maxLoadFactor of the receiver.
* @throws IllegalArgumentException if initialCapacity < 0 || (minLoadFactor < 0.0 || minLoadFactor >= 1.0) ||
* (maxLoadFactor <= 0.0 || maxLoadFactor >= 1.0) || (minLoadFactor >=
* maxLoadFactor).
*/
@SuppressWarnings("unchecked")
@Override
final protected void setUp(int initialCapacity, double minLoadFactor, double maxLoadFactor) {
int capacity = initialCapacity;
super.setUp(capacity, minLoadFactor, maxLoadFactor);
capacity = nextPrime(capacity);
if (capacity == 0) {
capacity = 1;
} // open addressing needs at least one FREE slot at any time.
this.table = new float[capacity];
this.values = (T[]) new Object[capacity];
this.state = new byte[capacity];
// memory will be exhausted long before this pathological case happens, anyway.
this.minLoadFactor = minLoadFactor;
if (capacity == PrimeFinder.LARGEST_PRIME) {
this.maxLoadFactor = 1.0;
} else {
this.maxLoadFactor = maxLoadFactor;
}
this.distinct = 0;
this.freeEntries = capacity; // delta
// lowWaterMark will be established upon first expansion.
// establishing it now (upon instance construction) would immediately make the table shrink upon first put(...).
// After all the idea of an "initialCapacity" implies violating lowWaterMarks when an object is young.
// See ensureCapacity(...)
this.lowWaterMark = 0;
this.highWaterMark = chooseHighWaterMark(capacity, this.maxLoadFactor);
}
/**
* Trims the capacity of the receiver to be the receiver's current size. Releases any superfluous internal memory. An
* application can use this operation to minimize the storage of the receiver.
*/
@Override
public void trimToSize() {
// * 1.2 because open addressing's performance exponentially degrades beyond that point
// so that even rehashing the table can take very long
int newCapacity = nextPrime((int) (1 + 1.2 * size()));
if (table.length > newCapacity) {
rehash(newCapacity);
}
}
/**
* Fills all values contained in the receiver into the specified list. Fills the list, starting at index 0. After this
* call returns the specified list has a new size that equals this.size().
* This method can be used to
* iterate over the values of the receiver.
*
* @param list the list to be filled, can have any size.
*/
@Override
public void values(List list) {
list.clear();
for (int i = state.length; i-- > 0;) {
if (state[i] == FULL) {
list.add(values[i]);
}
}
}
/**
* Access for unit tests.
* @param capacity
* @param minLoadFactor
* @param maxLoadFactor
*/
protected void getInternalFactors(int[] capacity,
double[] minLoadFactor,
double[] maxLoadFactor) {
capacity[0] = table.length;
minLoadFactor[0] = this.minLoadFactor;
maxLoadFactor[0] = this.maxLoadFactor;
}
}