All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.mahout.math.solver.EigenDecomposition Maven / Gradle / Ivy

Go to download

High performance scientific and technical computing data structures and methods, mostly based on CERN's Colt Java API

There is a newer version: 0.13.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * Adapted from the public domain Jama code.
 */

package org.apache.mahout.math.solver;

import org.apache.mahout.math.DenseMatrix;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.Matrix;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.function.Functions;

/**
 * Eigenvalues and eigenvectors of a real matrix.
 * 

* If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector * matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) * equals the identity matrix. *

* If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues * in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, * lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. * A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the * validity of the equation A = V*D*inverse(V) depends upon V.cond(). */ public class EigenDecomposition { /** Row and column dimension (square matrix). */ private final int n; /** Arrays for internal storage of eigenvalues. */ private final Vector d; private final Vector e; /** Array for internal storage of eigenvectors. */ private final Matrix v; public EigenDecomposition(Matrix x) { this(x, isSymmetric(x)); } public EigenDecomposition(Matrix x, boolean isSymmetric) { n = x.columnSize(); d = new DenseVector(n); e = new DenseVector(n); v = new DenseMatrix(n, n); if (isSymmetric) { v.assign(x); // Tridiagonalize. tred2(); // Diagonalize. tql2(); } else { // Reduce to Hessenberg form. // Reduce Hessenberg to real Schur form. hqr2(orthes(x)); } } /** * Return the eigenvector matrix * * @return V */ public Matrix getV() { return v.like().assign(v); } /** * Return the real parts of the eigenvalues */ public Vector getRealEigenvalues() { return d; } /** * Return the imaginary parts of the eigenvalues */ public Vector getImagEigenvalues() { return e; } /** * Return the block diagonal eigenvalue matrix * * @return D */ public Matrix getD() { Matrix x = new DenseMatrix(n, n); x.assign(0); x.viewDiagonal().assign(d); for (int i = 0; i < n; i++) { double v = e.getQuick(i); if (v > 0) { x.setQuick(i, i + 1, v); } else if (v < 0) { x.setQuick(i, i - 1, v); } } return x; } // Symmetric Householder reduction to tridiagonal form. private void tred2() { // This is derived from the Algol procedures tred2 by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. d.assign(v.viewColumn(n - 1)); // Householder reduction to tridiagonal form. for (int i = n - 1; i > 0; i--) { // Scale to avoid under/overflow. double scale = d.viewPart(0, i).norm(1); double h = 0.0; if (scale == 0.0) { e.setQuick(i, d.getQuick(i - 1)); for (int j = 0; j < i; j++) { d.setQuick(j, v.getQuick(i - 1, j)); v.setQuick(i, j, 0.0); v.setQuick(j, i, 0.0); } } else { // Generate Householder vector. for (int k = 0; k < i; k++) { d.setQuick(k, d.getQuick(k) / scale); h += d.getQuick(k) * d.getQuick(k); } double f = d.getQuick(i - 1); double g = Math.sqrt(h); if (f > 0) { g = -g; } e.setQuick(i, scale * g); h -= f * g; d.setQuick(i - 1, f - g); for (int j = 0; j < i; j++) { e.setQuick(j, 0.0); } // Apply similarity transformation to remaining columns. for (int j = 0; j < i; j++) { f = d.getQuick(j); v.setQuick(j, i, f); g = e.getQuick(j) + v.getQuick(j, j) * f; for (int k = j + 1; k <= i - 1; k++) { g += v.getQuick(k, j) * d.getQuick(k); e.setQuick(k, e.getQuick(k) + v.getQuick(k, j) * f); } e.setQuick(j, g); } f = 0.0; for (int j = 0; j < i; j++) { e.setQuick(j, e.getQuick(j) / h); f += e.getQuick(j) * d.getQuick(j); } double hh = f / (h + h); for (int j = 0; j < i; j++) { e.setQuick(j, e.getQuick(j) - hh * d.getQuick(j)); } for (int j = 0; j < i; j++) { f = d.getQuick(j); g = e.getQuick(j); for (int k = j; k <= i - 1; k++) { v.setQuick(k, j, v.getQuick(k, j) - (f * e.getQuick(k) + g * d.getQuick(k))); } d.setQuick(j, v.getQuick(i - 1, j)); v.setQuick(i, j, 0.0); } } d.setQuick(i, h); } // Accumulate transformations. for (int i = 0; i < n - 1; i++) { v.setQuick(n - 1, i, v.getQuick(i, i)); v.setQuick(i, i, 1.0); double h = d.getQuick(i + 1); if (h != 0.0) { for (int k = 0; k <= i; k++) { d.setQuick(k, v.getQuick(k, i + 1) / h); } for (int j = 0; j <= i; j++) { double g = 0.0; for (int k = 0; k <= i; k++) { g += v.getQuick(k, i + 1) * v.getQuick(k, j); } for (int k = 0; k <= i; k++) { v.setQuick(k, j, v.getQuick(k, j) - g * d.getQuick(k)); } } } for (int k = 0; k <= i; k++) { v.setQuick(k, i + 1, 0.0); } } d.assign(v.viewRow(n - 1)); v.viewRow(n - 1).assign(0); v.setQuick(n - 1, n - 1, 1.0); e.setQuick(0, 0.0); } // Symmetric tridiagonal QL algorithm. private void tql2() { // This is derived from the Algol procedures tql2, by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. e.viewPart(0, n - 1).assign(e.viewPart(1, n - 1)); e.setQuick(n - 1, 0.0); double f = 0.0; double tst1 = 0.0; double eps = Math.pow(2.0, -52.0); for (int l = 0; l < n; l++) { // Find small subdiagonal element tst1 = Math.max(tst1, Math.abs(d.getQuick(l)) + Math.abs(e.getQuick(l))); int m = l; while (m < n) { if (Math.abs(e.getQuick(m)) <= eps * tst1) { break; } m++; } // If m == l, d.getQuick(l) is an eigenvalue, // otherwise, iterate. if (m > l) { do { // Compute implicit shift double g = d.getQuick(l); double p = (d.getQuick(l + 1) - g) / (2.0 * e.getQuick(l)); double r = Math.hypot(p, 1.0); if (p < 0) { r = -r; } d.setQuick(l, e.getQuick(l) / (p + r)); d.setQuick(l + 1, e.getQuick(l) * (p + r)); double dl1 = d.getQuick(l + 1); double h = g - d.getQuick(l); for (int i = l + 2; i < n; i++) { d.setQuick(i, d.getQuick(i) - h); } f += h; // Implicit QL transformation. p = d.getQuick(m); double c = 1.0; double c2 = c; double c3 = c; double el1 = e.getQuick(l + 1); double s = 0.0; double s2 = 0.0; for (int i = m - 1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c * e.getQuick(i); h = c * p; r = Math.hypot(p, e.getQuick(i)); e.setQuick(i + 1, s * r); s = e.getQuick(i) / r; c = p / r; p = c * d.getQuick(i) - s * g; d.setQuick(i + 1, h + s * (c * g + s * d.getQuick(i))); // Accumulate transformation. for (int k = 0; k < n; k++) { h = v.getQuick(k, i + 1); v.setQuick(k, i + 1, s * v.getQuick(k, i) + c * h); v.setQuick(k, i, c * v.getQuick(k, i) - s * h); } } p = -s * s2 * c3 * el1 * e.getQuick(l) / dl1; e.setQuick(l, s * p); d.setQuick(l, c * p); // Check for convergence. } while (Math.abs(e.getQuick(l)) > eps * tst1); } d.setQuick(l, d.getQuick(l) + f); e.setQuick(l, 0.0); } // Sort eigenvalues and corresponding vectors. for (int i = 0; i < n - 1; i++) { int k = i; double p = d.getQuick(i); for (int j = i + 1; j < n; j++) { if (d.getQuick(j) > p) { k = j; p = d.getQuick(j); } } if (k != i) { d.setQuick(k, d.getQuick(i)); d.setQuick(i, p); for (int j = 0; j < n; j++) { p = v.getQuick(j, i); v.setQuick(j, i, v.getQuick(j, k)); v.setQuick(j, k, p); } } } } // Nonsymmetric reduction to Hessenberg form. private Matrix orthes(Matrix x) { // Working storage for nonsymmetric algorithm. Vector ort = new DenseVector(n); Matrix hessenBerg = new DenseMatrix(n, n).assign(x); // This is derived from the Algol procedures orthes and ortran, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutines in EISPACK. int low = 0; int high = n - 1; for (int m = low + 1; m <= high - 1; m++) { // Scale column. Vector hColumn = hessenBerg.viewColumn(m - 1).viewPart(m, high - m + 1); double scale = hColumn.norm(1); if (scale != 0.0) { // Compute Householder transformation. ort.viewPart(m, high - m + 1).assign(hColumn, Functions.plusMult(1 / scale)); double h = ort.viewPart(m, high - m + 1).getLengthSquared(); double g = Math.sqrt(h); if (ort.getQuick(m) > 0) { g = -g; } h -= ort.getQuick(m) * g; ort.setQuick(m, ort.getQuick(m) - g); // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) Vector ortPiece = ort.viewPart(m, high - m + 1); for (int j = m; j < n; j++) { double f = ortPiece.dot(hessenBerg.viewColumn(j).viewPart(m, high - m + 1)) / h; hessenBerg.viewColumn(j).viewPart(m, high - m + 1).assign(ortPiece, Functions.plusMult(-f)); } for (int i = 0; i <= high; i++) { double f = ortPiece.dot(hessenBerg.viewRow(i).viewPart(m, high - m + 1)) / h; hessenBerg.viewRow(i).viewPart(m, high - m + 1).assign(ortPiece, Functions.plusMult(-f)); } ort.setQuick(m, scale * ort.getQuick(m)); hessenBerg.setQuick(m, m - 1, scale * g); } } // Accumulate transformations (Algol's ortran). v.assign(0); v.viewDiagonal().assign(1); for (int m = high - 1; m >= low + 1; m--) { if (hessenBerg.getQuick(m, m - 1) != 0.0) { ort.viewPart(m + 1, high - m).assign(hessenBerg.viewColumn(m - 1).viewPart(m + 1, high - m)); for (int j = m; j <= high; j++) { double g = ort.viewPart(m, high - m + 1).dot(v.viewColumn(j).viewPart(m, high - m + 1)); // Double division avoids possible underflow g = g / ort.getQuick(m) / hessenBerg.getQuick(m, m - 1); v.viewColumn(j).viewPart(m, high - m + 1).assign(ort.viewPart(m, high - m + 1), Functions.plusMult(g)); } } } return hessenBerg; } // Complex scalar division. private double cdivr; private double cdivi; private void cdiv(double xr, double xi, double yr, double yi) { double r; double d; if (Math.abs(yr) > Math.abs(yi)) { r = yi / yr; d = yr + r * yi; cdivr = (xr + r * xi) / d; cdivi = (xi - r * xr) / d; } else { r = yr / yi; d = yi + r * yr; cdivr = (r * xr + xi) / d; cdivi = (r * xi - xr) / d; } } // Nonsymmetric reduction from Hessenberg to real Schur form. private void hqr2(Matrix h) { // This is derived from the Algol procedure hqr2, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. // Initialize int nn = this.n; int n = nn - 1; int low = 0; int high = nn - 1; double eps = Math.pow(2.0, -52.0); double exshift = 0.0; double p = 0; double q = 0; double r = 0; double s = 0; double z = 0; double w; double x; double y; // Store roots isolated by balanc and compute matrix norm double norm = h.aggregate(Functions.PLUS, Functions.ABS); // Outer loop over eigenvalue index int iter = 0; while (n >= low) { // Look for single small sub-diagonal element int l = n; while (l > low) { s = Math.abs(h.getQuick(l - 1, l - 1)) + Math.abs(h.getQuick(l, l)); if (s == 0.0) { s = norm; } if (Math.abs(h.getQuick(l, l - 1)) < eps * s) { break; } l--; } // Check for convergence if (l == n) { // One root found h.setQuick(n, n, h.getQuick(n, n) + exshift); d.setQuick(n, h.getQuick(n, n)); e.setQuick(n, 0.0); n--; iter = 0; } else if (l == n - 1) { // Two roots found w = h.getQuick(n, n - 1) * h.getQuick(n - 1, n); p = (h.getQuick(n - 1, n - 1) - h.getQuick(n, n)) / 2.0; q = p * p + w; z = Math.sqrt(Math.abs(q)); h.setQuick(n, n, h.getQuick(n, n) + exshift); h.setQuick(n - 1, n - 1, h.getQuick(n - 1, n - 1) + exshift); x = h.getQuick(n, n); // Real pair if (q >= 0) { if (p >= 0) { z = p + z; } else { z = p - z; } d.setQuick(n - 1, x + z); d.setQuick(n, d.getQuick(n - 1)); if (z != 0.0) { d.setQuick(n, x - w / z); } e.setQuick(n - 1, 0.0); e.setQuick(n, 0.0); x = h.getQuick(n, n - 1); s = Math.abs(x) + Math.abs(z); p = x / s; q = z / s; r = Math.sqrt(p * p + q * q); p /= r; q /= r; // Row modification for (int j = n - 1; j < nn; j++) { z = h.getQuick(n - 1, j); h.setQuick(n - 1, j, q * z + p * h.getQuick(n, j)); h.setQuick(n, j, q * h.getQuick(n, j) - p * z); } // Column modification for (int i = 0; i <= n; i++) { z = h.getQuick(i, n - 1); h.setQuick(i, n - 1, q * z + p * h.getQuick(i, n)); h.setQuick(i, n, q * h.getQuick(i, n) - p * z); } // Accumulate transformations for (int i = low; i <= high; i++) { z = v.getQuick(i, n - 1); v.setQuick(i, n - 1, q * z + p * v.getQuick(i, n)); v.setQuick(i, n, q * v.getQuick(i, n) - p * z); } // Complex pair } else { d.setQuick(n - 1, x + p); d.setQuick(n, x + p); e.setQuick(n - 1, z); e.setQuick(n, -z); } n -= 2; iter = 0; // No convergence yet } else { // Form shift x = h.getQuick(n, n); y = 0.0; w = 0.0; if (l < n) { y = h.getQuick(n - 1, n - 1); w = h.getQuick(n, n - 1) * h.getQuick(n - 1, n); } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n; i++) { h.setQuick(i, i, x); } s = Math.abs(h.getQuick(n, n - 1)) + Math.abs(h.getQuick(n - 1, n - 2)); x = y = 0.75 * s; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = Math.sqrt(s); if (y < x) { s = -s; } s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n; i++) { h.setQuick(i, i, h.getQuick(i, i) - s); } exshift += s; x = y = w = 0.964; } } iter++; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements int m = n - 2; while (m >= l) { z = h.getQuick(m, m); r = x - z; s = y - z; p = (r * s - w) / h.getQuick(m + 1, m) + h.getQuick(m, m + 1); q = h.getQuick(m + 1, m + 1) - z - r - s; r = h.getQuick(m + 2, m + 1); s = Math.abs(p) + Math.abs(q) + Math.abs(r); p /= s; q /= s; r /= s; if (m == l) { break; } double hmag = Math.abs(h.getQuick(m - 1, m - 1)) + Math.abs(h.getQuick(m + 1, m + 1)); double threshold = eps * Math.abs(p) * (Math.abs(z) + hmag); if (Math.abs(h.getQuick(m, m - 1)) * (Math.abs(q) + Math.abs(r)) < threshold) { break; } m--; } for (int i = m + 2; i <= n; i++) { h.setQuick(i, i - 2, 0.0); if (i > m + 2) { h.setQuick(i, i - 3, 0.0); } } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n - 1; k++) { boolean notlast = k != n - 1; if (k != m) { p = h.getQuick(k, k - 1); q = h.getQuick(k + 1, k - 1); r = notlast ? h.getQuick(k + 2, k - 1) : 0.0; x = Math.abs(p) + Math.abs(q) + Math.abs(r); if (x != 0.0) { p /= x; q /= x; r /= x; } } if (x == 0.0) { break; } s = Math.sqrt(p * p + q * q + r * r); if (p < 0) { s = -s; } if (s != 0) { if (k != m) { h.setQuick(k, k - 1, -s * x); } else if (l != m) { h.setQuick(k, k - 1, -h.getQuick(k, k - 1)); } p += s; x = p / s; y = q / s; z = r / s; q /= p; r /= p; // Row modification for (int j = k; j < nn; j++) { p = h.getQuick(k, j) + q * h.getQuick(k + 1, j); if (notlast) { p += r * h.getQuick(k + 2, j); h.setQuick(k + 2, j, h.getQuick(k + 2, j) - p * z); } h.setQuick(k, j, h.getQuick(k, j) - p * x); h.setQuick(k + 1, j, h.getQuick(k + 1, j) - p * y); } // Column modification for (int i = 0; i <= Math.min(n, k + 3); i++) { p = x * h.getQuick(i, k) + y * h.getQuick(i, k + 1); if (notlast) { p += z * h.getQuick(i, k + 2); h.setQuick(i, k + 2, h.getQuick(i, k + 2) - p * r); } h.setQuick(i, k, h.getQuick(i, k) - p); h.setQuick(i, k + 1, h.getQuick(i, k + 1) - p * q); } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * v.getQuick(i, k) + y * v.getQuick(i, k + 1); if (notlast) { p += z * v.getQuick(i, k + 2); v.setQuick(i, k + 2, v.getQuick(i, k + 2) - p * r); } v.setQuick(i, k, v.getQuick(i, k) - p); v.setQuick(i, k + 1, v.getQuick(i, k + 1) - p * q); } } // (s != 0) } // k loop } // check convergence } // while (n >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n = nn - 1; n >= 0; n--) { p = d.getQuick(n); q = e.getQuick(n); // Real vector double t; if (q == 0) { int l = n; h.setQuick(n, n, 1.0); for (int i = n - 1; i >= 0; i--) { w = h.getQuick(i, i) - p; r = 0.0; for (int j = l; j <= n; j++) { r += h.getQuick(i, j) * h.getQuick(j, n); } if (e.getQuick(i) < 0.0) { z = w; s = r; } else { l = i; if (e.getQuick(i) == 0.0) { if (w == 0.0) { h.setQuick(i, n, -r / (eps * norm)); } else { h.setQuick(i, n, -r / w); } // Solve real equations } else { x = h.getQuick(i, i + 1); y = h.getQuick(i + 1, i); q = (d.getQuick(i) - p) * (d.getQuick(i) - p) + e.getQuick(i) * e.getQuick(i); t = (x * s - z * r) / q; h.setQuick(i, n, t); if (Math.abs(x) > Math.abs(z)) { h.setQuick(i + 1, n, (-r - w * t) / x); } else { h.setQuick(i + 1, n, (-s - y * t) / z); } } // Overflow control t = Math.abs(h.getQuick(i, n)); if (eps * t * t > 1) { for (int j = i; j <= n; j++) { h.setQuick(j, n, h.getQuick(j, n) / t); } } } } // Complex vector } else if (q < 0) { int l = n - 1; // Last vector component imaginary so matrix is triangular if (Math.abs(h.getQuick(n, n - 1)) > Math.abs(h.getQuick(n - 1, n))) { h.setQuick(n - 1, n - 1, q / h.getQuick(n, n - 1)); h.setQuick(n - 1, n, -(h.getQuick(n, n) - p) / h.getQuick(n, n - 1)); } else { cdiv(0.0, -h.getQuick(n - 1, n), h.getQuick(n - 1, n - 1) - p, q); h.setQuick(n - 1, n - 1, cdivr); h.setQuick(n - 1, n, cdivi); } h.setQuick(n, n - 1, 0.0); h.setQuick(n, n, 1.0); for (int i = n - 2; i >= 0; i--) { double ra = 0.0; double sa = 0.0; for (int j = l; j <= n; j++) { ra += h.getQuick(i, j) * h.getQuick(j, n - 1); sa += h.getQuick(i, j) * h.getQuick(j, n); } w = h.getQuick(i, i) - p; if (e.getQuick(i) < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e.getQuick(i) == 0) { cdiv(-ra, -sa, w, q); h.setQuick(i, n - 1, cdivr); h.setQuick(i, n, cdivi); } else { // Solve complex equations x = h.getQuick(i, i + 1); y = h.getQuick(i + 1, i); double vr = (d.getQuick(i) - p) * (d.getQuick(i) - p) + e.getQuick(i) * e.getQuick(i) - q * q; double vi = (d.getQuick(i) - p) * 2.0 * q; if (vr == 0.0 && vi == 0.0) { double hmag = Math.abs(x) + Math.abs(y); vr = eps * norm * (Math.abs(w) + Math.abs(q) + hmag + Math.abs(z)); } cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); h.setQuick(i, n - 1, cdivr); h.setQuick(i, n, cdivi); if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) { h.setQuick(i + 1, n - 1, (-ra - w * h.getQuick(i, n - 1) + q * h.getQuick(i, n)) / x); h.setQuick(i + 1, n, (-sa - w * h.getQuick(i, n) - q * h.getQuick(i, n - 1)) / x); } else { cdiv(-r - y * h.getQuick(i, n - 1), -s - y * h.getQuick(i, n), z, q); h.setQuick(i + 1, n - 1, cdivr); h.setQuick(i + 1, n, cdivi); } } // Overflow control t = Math.max(Math.abs(h.getQuick(i, n - 1)), Math.abs(h.getQuick(i, n))); if (eps * t * t > 1) { for (int j = i; j <= n; j++) { h.setQuick(j, n - 1, h.getQuick(j, n - 1) / t); h.setQuick(j, n, h.getQuick(j, n) / t); } } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) { if (i < low || i > high) { for (int j = i; j < nn; j++) { v.setQuick(i, j, h.getQuick(i, j)); } } } // Back transformation to get eigenvectors of original matrix for (int j = nn - 1; j >= low; j--) { for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= Math.min(j, high); k++) { z += v.getQuick(i, k) * h.getQuick(k, j); } v.setQuick(i, j, z); } } } private static boolean isSymmetric(Matrix a) { /* Symmetry flag. */ int n = a.columnSize(); boolean isSymmetric = true; for (int j = 0; (j < n) && isSymmetric; j++) { for (int i = 0; (i < n) && isSymmetric; i++) { isSymmetric = a.getQuick(i, j) == a.getQuick(j, i); } } return isSymmetric; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy