org.apache.mahout.math.map.AbstractByteFloatMap Maven / Gradle / Ivy
Show all versions of mahout-math Show documentation
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
Copyright � 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package org.apache.mahout.math.map;
import java.nio.IntBuffer;
import java.util.Arrays;
import org.apache.mahout.math.Sorting;
import org.apache.mahout.math.Swapper;
import org.apache.mahout.math.set.HashUtils;
import org.apache.mahout.math.function.ByteFloatProcedure;
import org.apache.mahout.math.function.ByteProcedure;
import org.apache.mahout.math.list.ByteArrayList;
import org.apache.mahout.math.list.FloatArrayList;
import org.apache.mahout.math.function.IntComparator;
import org.apache.mahout.math.function.FloatFunction;
import org.apache.mahout.math.set.AbstractSet;
public abstract class AbstractByteFloatMap extends AbstractSet {
/**
* Returns true if the receiver contains the specified key.
*
* @return true if the receiver contains the specified key.
*/
public boolean containsKey(final byte key) {
return !forEachKey(
new ByteProcedure() {
@Override
public boolean apply(byte iterKey) {
return key != iterKey;
}
}
);
}
/**
* Returns true if the receiver contains the specified value.
*
* @return true if the receiver contains the specified value.
*/
public boolean containsValue(final float value) {
return !forEachPair(
new ByteFloatProcedure() {
@Override
public boolean apply(byte iterKey, float iterValue) {
return (value != iterValue);
}
}
);
}
/**
* Returns a deep copy of the receiver; uses clone()
and casts the result.
*
* @return a deep copy of the receiver.
*/
public AbstractByteFloatMap copy() {
return (AbstractByteFloatMap) clone();
}
/**
* Compares the specified object with this map for equality. Returns true if the given object is also a map
* and the two maps represent the same mappings. More formally, two maps m1 and m2 represent the
* same mappings iff
*
* m1.forEachPair(
* new ByteFloatProcedure() {
* public boolean apply(byte key, float value) {
* return m2.containsKey(key) && m2.get(key) == value;
* }
* }
* )
* &&
* m2.forEachPair(
* new ByteFloatProcedure() {
* public boolean apply(byte key, float value) {
* return m1.containsKey(key) && m1.get(key) == value;
* }
* }
* );
*
*
* This implementation first checks if the specified object is this map; if so it returns true. Then, it
* checks if the specified object is a map whose size is identical to the size of this set; if not, it it returns
* false. If so, it applies the iteration as described above.
*
* @param obj object to be compared for equality with this map.
* @return true if the specified object is equal to this map.
*/
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof AbstractByteFloatMap)) {
return false;
}
final AbstractByteFloatMap other = (AbstractByteFloatMap) obj;
if (other.size() != size()) {
return false;
}
return
forEachPair(
new ByteFloatProcedure() {
@Override
public boolean apply(byte key, float value) {
return other.containsKey(key) && other.get(key) == value;
}
}
)
&&
other.forEachPair(
new ByteFloatProcedure() {
@Override
public boolean apply(byte key, float value) {
return containsKey(key) && get(key) == value;
}
}
);
}
public int hashCode() {
final int[] buf = new int[size()];
forEachPair(
new ByteFloatProcedure() {
int i = 0;
@Override
public boolean apply(byte key, float value) {
buf[i++] = HashUtils.hash(key) ^ HashUtils.hash(value);
return true;
}
}
);
Arrays.sort(buf);
return IntBuffer.wrap(buf).hashCode();
}
/**
* Applies a procedure to each key of the receiver, if any. Note: Iterates over the keys in no particular order.
* Subclasses can define a particular order, for example, "sorted by key". All methods which can be expressed
* in terms of this method (most methods can) must guarantee to use the same order defined by this
* method, even if it is no particular order. This is necessary so that, for example, methods keys and
* values will yield association pairs, not two uncorrelated lists.
*
* @param procedure the procedure to be applied. Stops iteration if the procedure returns false, otherwise
* continues.
* @return false if the procedure stopped before all keys where iterated over, true otherwise.
*/
public abstract boolean forEachKey(ByteProcedure procedure);
/**
* Applies a procedure to each (key,value) pair of the receiver, if any. Iteration order is guaranteed to be
* identical to the order used by method {@link #forEachKey(ByteProcedure)}.
*
* @param procedure the procedure to be applied. Stops iteration if the procedure returns false, otherwise
* continues.
* @return false if the procedure stopped before all keys where iterated over, true otherwise.
*/
public boolean forEachPair(final ByteFloatProcedure procedure) {
return forEachKey(
new ByteProcedure() {
@Override
public boolean apply(byte key) {
return procedure.apply(key, get(key));
}
}
);
}
/**
* Returns the value associated with the specified key. It is often a good idea to first check with {@link
* #containsKey(byte)} whether the given key has a value associated or not, i.e. whether there exists an association
* for the given key or not.
*
* @param key the key to be searched for.
* @return the value associated with the specified key; 0 if no such key is present.
*/
public abstract float get(byte key);
/**
* Returns a list filled with all keys contained in the receiver. The returned list has a size that equals
* this.size(). Iteration order is guaranteed to be identical to the order used by method {@link
* #forEachKey(ByteProcedure)}. This method can be used to iterate over the keys of the receiver.
*
* @return the keys.
*/
public ByteArrayList keys() {
ByteArrayList list = new ByteArrayList(size());
keys(list);
return list;
}
/**
* Fills all keys contained in the receiver into the specified list. Fills the list, starting at index 0. After this
* call returns the specified list has a new size that equals this.size(). Iteration order is guaranteed to
* be identical to the order used by method {@link #forEachKey(ByteProcedure)}.
This method can be used to
* iterate over the keys of the receiver.
*
* @param list the list to be filled, can have any size.
*/
public void keys(final ByteArrayList list) {
list.clear();
forEachKey(
new ByteProcedure() {
@Override
public boolean apply(byte key) {
list.add(key);
return true;
}
}
);
}
/**
* Fills all keys sorted ascending by their associated value into the specified list. Fills into the list,
* starting at index 0. After this call returns the specified list has a new size that equals this.size().
* Primary sort criterium is "value", secondary sort criterium is "key". This means that if any two values are equal,
* the smaller key comes first.
Example:
keys = (8,7,6), values = (1,2,2) --> keyList =
* (8,6,7)
*
* @param keyList the list to be filled, can have any size.
*/
public void keysSortedByValue(ByteArrayList keyList) {
pairsSortedByValue(keyList, new FloatArrayList(size()));
}
/**
* Fills all pairs satisfying a given condition into the specified lists. Fills into the lists, starting at index 0.
* After this call returns the specified lists both have a new size, the number of pairs satisfying the condition.
* Iteration order is guaranteed to be identical to the order used by method
* {@link #forEachKey(ByteProcedure)}.
*
Example:
*
* IntIntProcedure condition = new IntIntProcedure() { // match even keys only
* public boolean apply(int key, int value) { return key%2==0; }
* }
* keys = (8,7,6), values = (1,2,2) --> keyList = (6,8), valueList = (2,1)
*
*
* @param condition the condition to be matched. Takes the current key as first and the current value as second
* argument.
* @param keyList the list to be filled with keys, can have any size.
* @param valueList the list to be filled with values, can have any size.
*/
public void pairsMatching(final ByteFloatProcedure condition,
final ByteArrayList keyList,
final FloatArrayList valueList) {
keyList.clear();
valueList.clear();
forEachPair(
new ByteFloatProcedure() {
@Override
public boolean apply(byte key, float value) {
if (condition.apply(key, value)) {
keyList.add(key);
valueList.add(value);
}
return true;
}
}
);
}
/**
* Fills all keys and values sorted ascending by key into the specified lists. Fills into the lists, starting
* at index 0. After this call returns the specified lists both have a new size that equals this.size().
* Example:
keys = (8,7,6), values = (1,2,2) --> keyList = (6,7,8), valueList = (2,2,1)
*
* @param keyList the list to be filled with keys, can have any size.
* @param valueList the list to be filled with values, can have any size.
*/
public void pairsSortedByKey(ByteArrayList keyList, FloatArrayList valueList) {
keys(keyList);
keyList.sort();
valueList.setSize(keyList.size());
for (int i = keyList.size(); --i >= 0;) {
valueList.setQuick(i, get(keyList.getQuick(i)));
}
}
/**
* Fills all keys and values sorted ascending by value into the specified lists. Fills into the lists, starting
* at index 0. After this call returns the specified lists both have a new size that equals this.size().
* Primary sort criterium is "value", secondary sort criterium is "key". This means that if any two values are equal,
* the smaller key comes first.
Example:
keys = (8,7,6), values = (1,2,2) --> keyList = (8,6,7),
* valueList = (1,2,2)
*
* @param keyList the list to be filled with keys, can have any size.
* @param valueList the list to be filled with values, can have any size.
*/
public void pairsSortedByValue(ByteArrayList keyList, FloatArrayList valueList) {
keys(keyList);
values(valueList);
final byte[] k = keyList.elements();
final float[] v = valueList.elements();
Swapper swapper = new Swapper() {
@Override
public void swap(int a, int b) {
float t1 = v[a];
v[a] = v[b];
v[b] = t1;
byte t2 = k[a];
k[a] = k[b];
k[b] = t2;
}
};
IntComparator comp = new IntComparator() {
@Override
public int compare(int a, int b) {
return v[a] < v[b] ? -1 : v[a] > v[b] ? 1 : (k[a] < k[b] ? -1 : (k[a] == k[b] ? 0 : 1));
}
};
Sorting.quickSort(0, keyList.size(), comp, swapper);
}
/**
* Associates the given key with the given value. Replaces any old (key,someOtherValue) association, if
* existing.
*
* @param key the key the value shall be associated with.
* @param value the value to be associated.
* @return true if the receiver did not already contain such a key; false if the receiver did
* already contain such a key - the new value has now replaced the formerly associated value.
*/
public abstract boolean put(byte key, float value);
/**
* Removes the given key with its associated element from the receiver, if present.
*
* @param key the key to be removed from the receiver.
* @return true if the receiver contained the specified key, false otherwise.
*/
public abstract boolean removeKey(byte key);
/**
* Returns a string representation of the receiver, containing the String representation of each key-value pair,
* sorted ascending by key.
*/
public String toString() {
ByteArrayList theKeys = keys();
//theKeys.sort();
StringBuilder buf = new StringBuilder();
buf.append('[');
int maxIndex = theKeys.size() - 1;
for (int i = 0; i <= maxIndex; i++) {
byte key = theKeys.get(i);
buf.append(String.valueOf(key));
buf.append("->");
buf.append(String.valueOf(get(key)));
if (i < maxIndex) {
buf.append(", ");
}
}
buf.append(']');
return buf.toString();
}
/**
* Returns a string representation of the receiver, containing the String representation of each key-value pair,
* sorted ascending by value.
*/
public String toStringByValue() {
ByteArrayList theKeys = new ByteArrayList();
keysSortedByValue(theKeys);
StringBuilder buf = new StringBuilder();
buf.append('[');
int maxIndex = theKeys.size() - 1;
for (int i = 0; i <= maxIndex; i++) {
byte key = theKeys.get(i);
buf.append(String.valueOf(key));
buf.append("->");
buf.append(String.valueOf(get(key)));
if (i < maxIndex) {
buf.append(", ");
}
}
buf.append(']');
return buf.toString();
}
/**
* Returns a list filled with all values contained in the receiver. The returned list has a size that equals
* this.size(). Iteration order is guaranteed to be identical to the order used by method {@link
* #forEachKey(ByteProcedure)}.
This method can be used to iterate over the values of the receiver.
*
* @return the values.
*/
public FloatArrayList values() {
FloatArrayList list = new FloatArrayList(size());
values(list);
return list;
}
/**
* Fills all values contained in the receiver into the specified list. Fills the list, starting at index 0. After this
* call returns the specified list has a new size that equals this.size(). Iteration order is guaranteed to
* be identical to the order used by method {@link #forEachKey(ByteProcedure)}.
*
This method can be used to
* iterate over the values of the receiver.
*
* @param list the list to be filled, can have any size.
*/
public void values(final FloatArrayList list) {
list.clear();
forEachKey(
new ByteProcedure() {
@Override
public boolean apply(byte key) {
list.add(get(key));
return true;
}
}
);
}
/**
* Assigns the result of a function to each value; v[i] = function(v[i]).
*
* @param function a function object taking as argument the current association's value.
*/
public void assign(final FloatFunction function) {
copy().forEachPair(
new ByteFloatProcedure() {
@Override
public boolean apply(byte key, float value) {
put(key, function.apply(value));
return true;
}
}
);
}
/**
* Clears the receiver, then adds all (key,value) pairs of othervalues to it.
*
* @param other the other map to be copied into the receiver.
*/
public void assign(AbstractByteFloatMap other) {
clear();
other.forEachPair(
new ByteFloatProcedure() {
@Override
public boolean apply(byte key, float value) {
put(key, value);
return true;
}
}
);
}
/**
* Check the map for a key. If present, add an increment to the value. If absent,
* store a specified value.
* @param key the key.
* @param newValue the value to store if the key is not currently in the map.
* @param incrValue the value to be added to the current value in the map.
**/
public float adjustOrPutValue(byte key, float newValue, float incrValue) {
boolean present = containsKey(key);
if (present) {
newValue = (float)(get(key) + incrValue);
put(key, newValue);
} else {
put(key, newValue);
}
return newValue;
}
}