org.apache.mahout.math.random.PoissonSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-math Show documentation
Show all versions of mahout-math Show documentation
High performance scientific and technical computing data structures and methods,
mostly based on CERN's
Colt Java API
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.math.random;
import com.google.common.collect.Lists;
import org.apache.commons.math3.distribution.PoissonDistribution;
import org.apache.mahout.common.RandomUtils;
import org.apache.mahout.common.RandomWrapper;
import java.util.List;
/**
* Samples from a Poisson distribution. Should probably not be used for lambda > 1000 or so.
*/
public final class PoissonSampler extends AbstractSamplerFunction {
private double limit;
private Multinomial partial;
private final RandomWrapper gen;
private final PoissonDistribution pd;
public PoissonSampler(double lambda) {
limit = 1;
gen = RandomUtils.getRandom();
pd = new PoissonDistribution(gen.getRandomGenerator(),
lambda,
PoissonDistribution.DEFAULT_EPSILON,
PoissonDistribution.DEFAULT_MAX_ITERATIONS);
}
@Override
public Double sample() {
return sample(gen.nextDouble());
}
double sample(double u) {
if (u < limit) {
List> steps = Lists.newArrayList();
limit = 1;
int i = 0;
while (u / 20 < limit) {
double pdf = pd.probability(i);
limit -= pdf;
steps.add(new WeightedThing<>(i, pdf));
i++;
}
steps.add(new WeightedThing<>(steps.size(), limit));
partial = new Multinomial<>(steps);
}
return partial.sample(u);
}
}