All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.mahout.classifier.df.mapreduce.Builder Maven / Gradle / Ivy

There is a newer version: 0.13.0
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.classifier.df.mapreduce;

import com.google.common.base.Preconditions;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.mahout.classifier.df.DecisionForest;
import org.apache.mahout.classifier.df.builder.TreeBuilder;
import org.apache.mahout.classifier.df.data.Dataset;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.Arrays;
import java.util.Comparator;

/**
 * Base class for Mapred DecisionForest builders. Takes care of storing the parameters common to the mapred
 * implementations.
* The child classes must implement at least : *
    *
  • void configureJob(Job) : to further configure the job before its launch; and
  • *
  • DecisionForest parseOutput(Job, PredictionCallback) : in order to convert the job outputs into a * DecisionForest and its corresponding oob predictions
  • *
* */ @Deprecated public abstract class Builder { private static final Logger log = LoggerFactory.getLogger(Builder.class); private final TreeBuilder treeBuilder; private final Path dataPath; private final Path datasetPath; private final Long seed; private final Configuration conf; private String outputDirName = "output"; protected Builder(TreeBuilder treeBuilder, Path dataPath, Path datasetPath, Long seed, Configuration conf) { this.treeBuilder = treeBuilder; this.dataPath = dataPath; this.datasetPath = datasetPath; this.seed = seed; this.conf = new Configuration(conf); } protected Path getDataPath() { return dataPath; } /** * Return the value of "mapred.map.tasks". * * @param conf * configuration * @return number of map tasks */ public static int getNumMaps(Configuration conf) { return conf.getInt("mapred.map.tasks", -1); } /** * Used only for DEBUG purposes. if false, the mappers doesn't output anything, so the builder has nothing * to process * * @param conf * configuration * @return true if the builder has to return output. false otherwise */ protected static boolean isOutput(Configuration conf) { return conf.getBoolean("debug.mahout.rf.output", true); } /** * Returns the random seed * * @param conf * configuration * @return null if no seed is available */ public static Long getRandomSeed(Configuration conf) { String seed = conf.get("mahout.rf.random.seed"); if (seed == null) { return null; } return Long.valueOf(seed); } /** * Sets the random seed value * * @param conf * configuration * @param seed * random seed */ private static void setRandomSeed(Configuration conf, long seed) { conf.setLong("mahout.rf.random.seed", seed); } public static TreeBuilder getTreeBuilder(Configuration conf) { String string = conf.get("mahout.rf.treebuilder"); if (string == null) { return null; } return StringUtils.fromString(string); } private static void setTreeBuilder(Configuration conf, TreeBuilder treeBuilder) { conf.set("mahout.rf.treebuilder", StringUtils.toString(treeBuilder)); } /** * Get the number of trees for the map-reduce job. * * @param conf * configuration * @return number of trees to build */ public static int getNbTrees(Configuration conf) { return conf.getInt("mahout.rf.nbtrees", -1); } /** * Set the number of trees to grow for the map-reduce job * * @param conf * configuration * @param nbTrees * number of trees to build * @throws IllegalArgumentException * if (nbTrees <= 0) */ public static void setNbTrees(Configuration conf, int nbTrees) { Preconditions.checkArgument(nbTrees > 0, "nbTrees should be greater than 0"); conf.setInt("mahout.rf.nbtrees", nbTrees); } /** * Sets the Output directory name, will be creating in the working directory * * @param name * output dir. name */ public void setOutputDirName(String name) { outputDirName = name; } /** * Output Directory name * * @param conf * configuration * @return output dir. path (%WORKING_DIRECTORY%/OUTPUT_DIR_NAME%) * @throws IOException * if we cannot get the default FileSystem */ protected Path getOutputPath(Configuration conf) throws IOException { // the output directory is accessed only by this class, so use the default // file system FileSystem fs = FileSystem.get(conf); return new Path(fs.getWorkingDirectory(), outputDirName); } /** * Helper method. Get a path from the DistributedCache * * @param conf * configuration * @param index * index of the path in the DistributedCache files * @return path from the DistributedCache * @throws IOException * if no path is found */ public static Path getDistributedCacheFile(Configuration conf, int index) throws IOException { Path[] files = HadoopUtil.getCachedFiles(conf); if (files.length <= index) { throw new IOException("path not found in the DistributedCache"); } return files[index]; } /** * Helper method. Load a Dataset stored in the DistributedCache * * @param conf * configuration * @return loaded Dataset * @throws IOException * if we cannot retrieve the Dataset path from the DistributedCache, or the Dataset could not be * loaded */ public static Dataset loadDataset(Configuration conf) throws IOException { Path datasetPath = getDistributedCacheFile(conf, 0); return Dataset.load(conf, datasetPath); } /** * Used by the inheriting classes to configure the job * * * @param job * Hadoop's Job * @throws IOException * if anything goes wrong while configuring the job */ protected abstract void configureJob(Job job) throws IOException; /** * Sequential implementation should override this method to simulate the job execution * * @param job * Hadoop's job * @return true is the job succeeded */ protected boolean runJob(Job job) throws ClassNotFoundException, IOException, InterruptedException { return job.waitForCompletion(true); } /** * Parse the output files to extract the trees and pass the predictions to the callback * * @param job * Hadoop's job * @return Built DecisionForest * @throws IOException * if anything goes wrong while parsing the output */ protected abstract DecisionForest parseOutput(Job job) throws IOException; public DecisionForest build(int nbTrees) throws IOException, ClassNotFoundException, InterruptedException { // int numTrees = getNbTrees(conf); Path outputPath = getOutputPath(conf); FileSystem fs = outputPath.getFileSystem(conf); // check the output if (fs.exists(outputPath)) { throw new IOException("Output path already exists : " + outputPath); } if (seed != null) { setRandomSeed(conf, seed); } setNbTrees(conf, nbTrees); setTreeBuilder(conf, treeBuilder); // put the dataset into the DistributedCache DistributedCache.addCacheFile(datasetPath.toUri(), conf); Job job = new Job(conf, "decision forest builder"); log.debug("Configuring the job..."); configureJob(job); log.debug("Running the job..."); if (!runJob(job)) { log.error("Job failed!"); return null; } if (isOutput(conf)) { log.debug("Parsing the output..."); DecisionForest forest = parseOutput(job); HadoopUtil.delete(conf, outputPath); return forest; } return null; } /** * sort the splits into order based on size, so that the biggest go first.
* This is the same code used by Hadoop's JobClient. * * @param splits * input splits */ public static void sortSplits(InputSplit[] splits) { Arrays.sort(splits, new Comparator() { @Override public int compare(InputSplit a, InputSplit b) { try { long left = a.getLength(); long right = b.getLength(); if (left == right) { return 0; } else if (left < right) { return 1; } else { return -1; } } catch (IOException ie) { throw new IllegalStateException("Problem getting input split size", ie); } catch (InterruptedException ie) { throw new IllegalStateException("Problem getting input split size", ie); } } }); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy