org.apache.mahout.classifier.naivebayes.BayesUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.classifier.naivebayes;
import java.io.IOException;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.regex.Pattern;
import com.google.common.base.Preconditions;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.mahout.classifier.naivebayes.training.ThetaMapper;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable;
import org.apache.mahout.math.Matrix;
import org.apache.mahout.math.SparseMatrix;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.map.OpenObjectIntHashMap;
public final class BayesUtils {
private static final Pattern SLASH = Pattern.compile("/");
private BayesUtils() {}
public static NaiveBayesModel readModelFromDir(Path base, Configuration conf) {
float alphaI = conf.getFloat(ThetaMapper.ALPHA_I, 1.0f);
boolean isComplementary = conf.getBoolean(NaiveBayesModel.COMPLEMENTARY_MODEL, true);
// read feature sums and label sums
Vector scoresPerLabel = null;
Vector scoresPerFeature = null;
for (Pair record : new SequenceFileDirIterable(
new Path(base, TrainNaiveBayesJob.WEIGHTS), PathType.LIST, PathFilters.partFilter(), conf)) {
String key = record.getFirst().toString();
VectorWritable value = record.getSecond();
if (key.equals(TrainNaiveBayesJob.WEIGHTS_PER_FEATURE)) {
scoresPerFeature = value.get();
} else if (key.equals(TrainNaiveBayesJob.WEIGHTS_PER_LABEL)) {
scoresPerLabel = value.get();
}
}
Preconditions.checkNotNull(scoresPerFeature);
Preconditions.checkNotNull(scoresPerLabel);
Matrix scoresPerLabelAndFeature = new SparseMatrix(scoresPerLabel.size(), scoresPerFeature.size());
for (Pair entry : new SequenceFileDirIterable(
new Path(base, TrainNaiveBayesJob.SUMMED_OBSERVATIONS), PathType.LIST, PathFilters.partFilter(), conf)) {
scoresPerLabelAndFeature.assignRow(entry.getFirst().get(), entry.getSecond().get());
}
// perLabelThetaNormalizer is only used by the complementary model, we do not instantiate it for the standard model
Vector perLabelThetaNormalizer = null;
if (isComplementary) {
perLabelThetaNormalizer=scoresPerLabel.like();
for (Pair entry : new SequenceFileDirIterable(
new Path(base, TrainNaiveBayesJob.THETAS), PathType.LIST, PathFilters.partFilter(), conf)) {
if (entry.getFirst().toString().equals(TrainNaiveBayesJob.LABEL_THETA_NORMALIZER)) {
perLabelThetaNormalizer = entry.getSecond().get();
}
}
Preconditions.checkNotNull(perLabelThetaNormalizer);
}
return new NaiveBayesModel(scoresPerLabelAndFeature, scoresPerFeature, scoresPerLabel, perLabelThetaNormalizer,
alphaI, isComplementary);
}
/** Write the list of labels into a map file */
public static int writeLabelIndex(Configuration conf, Iterable labels, Path indexPath)
throws IOException {
FileSystem fs = FileSystem.get(indexPath.toUri(), conf);
int i = 0;
try (SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, indexPath, Text.class, IntWritable.class)) {
for (String label : labels) {
writer.append(new Text(label), new IntWritable(i++));
}
}
return i;
}
public static int writeLabelIndex(Configuration conf, Path indexPath,
Iterable> labels) throws IOException {
FileSystem fs = FileSystem.get(indexPath.toUri(), conf);
Collection seen = new HashSet<>();
int i = 0;
try (SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, indexPath, Text.class, IntWritable.class)){
for (Object label : labels) {
String theLabel = SLASH.split(((Pair, ?>) label).getFirst().toString())[1];
if (!seen.contains(theLabel)) {
writer.append(new Text(theLabel), new IntWritable(i++));
seen.add(theLabel);
}
}
}
return i;
}
public static Map readLabelIndex(Configuration conf, Path indexPath) {
Map labelMap = new HashMap<>();
for (Pair pair : new SequenceFileIterable(indexPath, true, conf)) {
labelMap.put(pair.getSecond().get(), pair.getFirst().toString());
}
return labelMap;
}
public static OpenObjectIntHashMap readIndexFromCache(Configuration conf) throws IOException {
OpenObjectIntHashMap index = new OpenObjectIntHashMap<>();
for (Pair entry
: new SequenceFileIterable(HadoopUtil.getSingleCachedFile(conf), conf)) {
index.put(entry.getFirst().toString(), entry.getSecond().get());
}
return index;
}
public static Map readScoresFromCache(Configuration conf) throws IOException {
Map sumVectors = new HashMap<>();
for (Pair entry
: new SequenceFileDirIterable(HadoopUtil.getSingleCachedFile(conf),
PathType.LIST, PathFilters.partFilter(), conf)) {
sumVectors.put(entry.getFirst().toString(), entry.getSecond().get());
}
return sumVectors;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy