org.apache.mahout.classifier.naivebayes.training.ThetaMapper Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.classifier.naivebayes.training;
import java.io.IOException;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
public class ThetaMapper extends Mapper {
public static final String ALPHA_I = ThetaMapper.class.getName() + ".alphaI";
static final String TRAIN_COMPLEMENTARY = ThetaMapper.class.getName() + ".trainComplementary";
private ComplementaryThetaTrainer trainer;
@Override
protected void setup(Context ctx) throws IOException, InterruptedException {
super.setup(ctx);
Configuration conf = ctx.getConfiguration();
float alphaI = conf.getFloat(ALPHA_I, 1.0f);
Map scores = BayesUtils.readScoresFromCache(conf);
trainer = new ComplementaryThetaTrainer(scores.get(TrainNaiveBayesJob.WEIGHTS_PER_FEATURE),
scores.get(TrainNaiveBayesJob.WEIGHTS_PER_LABEL), alphaI);
}
@Override
protected void map(IntWritable key, VectorWritable value, Context ctx) throws IOException, InterruptedException {
trainer.train(key.get(), value.get());
}
@Override
protected void cleanup(Context ctx) throws IOException, InterruptedException {
ctx.write(new Text(TrainNaiveBayesJob.LABEL_THETA_NORMALIZER),
new VectorWritable(trainer.retrievePerLabelThetaNormalizer()));
super.cleanup(ctx);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy