org.apache.mahout.classifier.sgd.ElasticBandPrior Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.classifier.sgd;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
* Implements a linear combination of L1 and L2 priors. This can give an
* interesting mixture of sparsity and load-sharing between redundant predictors.
*/
public class ElasticBandPrior implements PriorFunction {
private double alphaByLambda;
private L1 l1;
private L2 l2;
// Exists for Writable
public ElasticBandPrior() {
this(0.0);
}
public ElasticBandPrior(double alphaByLambda) {
this.alphaByLambda = alphaByLambda;
l1 = new L1();
l2 = new L2(1);
}
@Override
public double age(double oldValue, double generations, double learningRate) {
oldValue *= Math.pow(1 - alphaByLambda * learningRate, generations);
double newValue = oldValue - Math.signum(oldValue) * learningRate * generations;
if (newValue * oldValue < 0.0) {
// don't allow the value to change sign
return 0.0;
} else {
return newValue;
}
}
@Override
public double logP(double betaIJ) {
return l1.logP(betaIJ) + alphaByLambda * l2.logP(betaIJ);
}
@Override
public void write(DataOutput out) throws IOException {
out.writeDouble(alphaByLambda);
l1.write(out);
l2.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
alphaByLambda = in.readDouble();
l1 = new L1();
l1.readFields(in);
l2 = new L2();
l2.readFields(in);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy