org.apache.mahout.clustering.kmeans.Kluster Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.clustering.kmeans;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.mahout.clustering.iterator.DistanceMeasureCluster;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.math.Vector;
public class Kluster extends DistanceMeasureCluster {
/** Has the centroid converged with the center? */
private boolean converged;
/** For (de)serialization as a Writable */
public Kluster() {
}
/**
* Construct a new cluster with the given point as its center
*
* @param center
* the Vector center
* @param clusterId
* the int cluster id
* @param measure
* a DistanceMeasure
*/
public Kluster(Vector center, int clusterId, DistanceMeasure measure) {
super(center, clusterId, measure);
}
/**
* Format the cluster for output
*
* @param cluster
* the Cluster
* @return the String representation of the Cluster
*/
public static String formatCluster(Kluster cluster) {
return cluster.getIdentifier() + ": " + cluster.computeCentroid().asFormatString();
}
public String asFormatString() {
return formatCluster(this);
}
@Override
public void write(DataOutput out) throws IOException {
super.write(out);
out.writeBoolean(converged);
}
@Override
public void readFields(DataInput in) throws IOException {
super.readFields(in);
this.converged = in.readBoolean();
}
@Override
public String toString() {
return asFormatString(null);
}
@Override
public String getIdentifier() {
return (converged ? "VL-" : "CL-") + getId();
}
/**
* Return if the cluster is converged by comparing its center and centroid.
*
* @param measure
* The distance measure to use for cluster-point comparisons.
* @param convergenceDelta
* the convergence delta to use for stopping.
* @return if the cluster is converged
*/
public boolean computeConvergence(DistanceMeasure measure, double convergenceDelta) {
Vector centroid = computeCentroid();
converged = measure.distance(centroid.getLengthSquared(), centroid, getCenter()) <= convergenceDelta;
return converged;
}
@Override
public boolean isConverged() {
return converged;
}
protected void setConverged(boolean converged) {
this.converged = converged;
}
public boolean calculateConvergence(double convergenceDelta) {
Vector centroid = computeCentroid();
converged = getMeasure().distance(centroid.getLengthSquared(), centroid, getCenter()) <= convergenceDelta;
return converged;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy