org.apache.mahout.clustering.spectral.AffinityMatrixInputReducer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.clustering.spectral;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.SequentialAccessSparseVector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.hadoop.DistributedRowMatrix;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Tasked with taking each DistributedRowMatrix entry and collecting them
* into vectors corresponding to rows. The input and output keys are the same,
* corresponding to the row in the ensuing matrix. The matrix entries are
* entered into a vector according to the column to which they belong, and
* the vector is then given the key corresponding to its row.
*/
public class AffinityMatrixInputReducer
extends Reducer {
private static final Logger log = LoggerFactory.getLogger(AffinityMatrixInputReducer.class);
@Override
protected void reduce(IntWritable row, Iterable values, Context context)
throws IOException, InterruptedException {
int size = context.getConfiguration().getInt(Keys.AFFINITY_DIMENSIONS, Integer.MAX_VALUE);
RandomAccessSparseVector out = new RandomAccessSparseVector(size, 100);
for (DistributedRowMatrix.MatrixEntryWritable element : values) {
out.setQuick(element.getCol(), element.getVal());
if (log.isDebugEnabled()) {
log.debug("(DEBUG - REDUCE) Row[{}], Column[{}], Value[{}]",
row.get(), element.getCol(), element.getVal());
}
}
SequentialAccessSparseVector output = new SequentialAccessSparseVector(out);
context.write(row, new VectorWritable(output));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy