org.apache.mahout.common.distance.CosineDistanceMeasure Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.common.distance;
import java.util.Collection;
import java.util.Collections;
import org.apache.hadoop.conf.Configuration;
import org.apache.mahout.common.parameters.Parameter;
import org.apache.mahout.math.CardinalityException;
import org.apache.mahout.math.Vector;
/**
* This class implements a cosine distance metric by dividing the dot product of two vectors by the product of their
* lengths. That gives the cosine of the angle between the two vectors. To convert this to a usable distance,
* 1-cos(angle) is what is actually returned.
*/
public class CosineDistanceMeasure implements DistanceMeasure {
@Override
public void configure(Configuration job) {
// nothing to do
}
@Override
public Collection> getParameters() {
return Collections.emptyList();
}
@Override
public void createParameters(String prefix, Configuration jobConf) {
// nothing to do
}
public static double distance(double[] p1, double[] p2) {
double dotProduct = 0.0;
double lengthSquaredp1 = 0.0;
double lengthSquaredp2 = 0.0;
for (int i = 0; i < p1.length; i++) {
lengthSquaredp1 += p1[i] * p1[i];
lengthSquaredp2 += p2[i] * p2[i];
dotProduct += p1[i] * p2[i];
}
double denominator = Math.sqrt(lengthSquaredp1) * Math.sqrt(lengthSquaredp2);
// correct for floating-point rounding errors
if (denominator < dotProduct) {
denominator = dotProduct;
}
// correct for zero-vector corner case
if (denominator == 0 && dotProduct == 0) {
return 0;
}
return 1.0 - dotProduct / denominator;
}
@Override
public double distance(Vector v1, Vector v2) {
if (v1.size() != v2.size()) {
throw new CardinalityException(v1.size(), v2.size());
}
double lengthSquaredv1 = v1.getLengthSquared();
double lengthSquaredv2 = v2.getLengthSquared();
double dotProduct = v2.dot(v1);
double denominator = Math.sqrt(lengthSquaredv1) * Math.sqrt(lengthSquaredv2);
// correct for floating-point rounding errors
if (denominator < dotProduct) {
denominator = dotProduct;
}
// correct for zero-vector corner case
if (denominator == 0 && dotProduct == 0) {
return 0;
}
return 1.0 - dotProduct / denominator;
}
@Override
public double distance(double centroidLengthSquare, Vector centroid, Vector v) {
double lengthSquaredv = v.getLengthSquared();
double dotProduct = v.dot(centroid);
double denominator = Math.sqrt(centroidLengthSquare) * Math.sqrt(lengthSquaredv);
// correct for floating-point rounding errors
if (denominator < dotProduct) {
denominator = dotProduct;
}
// correct for zero-vector corner case
if (denominator == 0 && dotProduct == 0) {
return 0;
}
return 1.0 - dotProduct / denominator;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy