org.apache.mahout.math.MatrixUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.math;
import com.google.common.collect.Lists;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Writable;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable;
import org.apache.mahout.math.map.OpenObjectIntHashMap;
import java.io.IOException;
import java.util.List;
public final class MatrixUtils {
private MatrixUtils() {
}
public static void write(Path outputDir, Configuration conf, VectorIterable matrix)
throws IOException {
FileSystem fs = outputDir.getFileSystem(conf);
fs.delete(outputDir, true);
SequenceFile.Writer writer = SequenceFile.createWriter(fs, conf, outputDir,
IntWritable.class, VectorWritable.class);
IntWritable topic = new IntWritable();
VectorWritable vector = new VectorWritable();
for (MatrixSlice slice : matrix) {
topic.set(slice.index());
vector.set(slice.vector());
writer.append(topic, vector);
}
writer.close();
}
public static Matrix read(Configuration conf, Path... modelPaths) throws IOException {
int numRows = -1;
int numCols = -1;
boolean sparse = false;
List> rows = Lists.newArrayList();
for (Path modelPath : modelPaths) {
for (Pair row
: new SequenceFileIterable(modelPath, true, conf)) {
rows.add(Pair.of(row.getFirst().get(), row.getSecond().get()));
numRows = Math.max(numRows, row.getFirst().get());
sparse = !row.getSecond().get().isDense();
if (numCols < 0) {
numCols = row.getSecond().get().size();
}
}
}
if (rows.isEmpty()) {
throw new IOException(Arrays.toString(modelPaths) + " have no vectors in it");
}
numRows++;
Vector[] arrayOfRows = new Vector[numRows];
for (Pair pair : rows) {
arrayOfRows[pair.getFirst()] = pair.getSecond();
}
Matrix matrix;
if (sparse) {
matrix = new SparseRowMatrix(numRows, numCols, arrayOfRows);
} else {
matrix = new DenseMatrix(numRows, numCols);
for (int i = 0; i < numRows; i++) {
matrix.assignRow(i, arrayOfRows[i]);
}
}
return matrix;
}
public static OpenObjectIntHashMap readDictionary(Configuration conf, Path... dictPath) {
OpenObjectIntHashMap dictionary = new OpenObjectIntHashMap<>();
for (Path dictionaryFile : dictPath) {
for (Pair record
: new SequenceFileIterable(dictionaryFile, true, conf)) {
dictionary.put(record.getFirst().toString(), record.getSecond().get());
}
}
return dictionary;
}
public static String[] invertDictionary(OpenObjectIntHashMap termIdMap) {
int maxTermId = -1;
for (String term : termIdMap.keys()) {
maxTermId = Math.max(maxTermId, termIdMap.get(term));
}
maxTermId++;
String[] dictionary = new String[maxTermId];
for (String term : termIdMap.keys()) {
dictionary[termIdMap.get(term)] = term;
}
return dictionary;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy