org.apache.mahout.vectorizer.encoders.TextValueEncoder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-mr Show documentation
Show all versions of mahout-mr Show documentation
Scalable machine learning libraries
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.vectorizer.encoders;
import com.google.common.base.Charsets;
import com.google.common.base.Splitter;
import com.google.common.collect.HashMultiset;
import com.google.common.collect.Lists;
import com.google.common.collect.Multiset;
import org.apache.mahout.math.Vector;
import java.util.Collection;
import java.util.regex.Pattern;
/**
* Encodes text that is tokenized on non-alphanum separators. Each word is encoded using a
* settable encoder which is by default an StaticWordValueEncoder which gives all
* words the same weight.
* @see LuceneTextValueEncoder
*/
public class TextValueEncoder extends FeatureVectorEncoder {
private static final double LOG_2 = Math.log(2.0);
private static final Splitter ON_NON_WORD = Splitter.on(Pattern.compile("\\W+")).omitEmptyStrings();
private FeatureVectorEncoder wordEncoder;
private final Multiset counts;
public TextValueEncoder(String name) {
super(name, 2);
wordEncoder = new StaticWordValueEncoder(name);
counts = HashMultiset.create();
}
/**
* Adds a value to a vector after tokenizing it by splitting on non-alphanum characters.
*
* @param originalForm The original form of the value as a string.
* @param data The vector to which the value should be added.
*/
@Override
public void addToVector(byte[] originalForm, double weight, Vector data) {
addText(originalForm);
flush(weight, data);
}
/**
* Adds text to the internal word counter, but delays converting it to vector
* form until flush is called.
* @param originalForm The original text encoded as UTF-8
*/
public void addText(byte[] originalForm) {
addText(new String(originalForm, Charsets.UTF_8));
}
/**
* Adds text to the internal word counter, but delays converting it to vector
* form until flush is called.
* @param text The original text encoded as UTF-8
*/
public void addText(CharSequence text) {
for (String word : tokenize(text)) {
counts.add(word);
}
}
/**
* Adds all of the tokens that we counted up to a vector.
*/
public void flush(double weight, Vector data) {
for (String word : counts.elementSet()) {
// weight words by log_2(tf) times whatever other weight we are given
wordEncoder.addToVector(word, weight * Math.log1p(counts.count(word)) / LOG_2, data);
}
counts.clear();
}
@Override
protected int hashForProbe(byte[] originalForm, int dataSize, String name, int probe) {
return 0;
}
@Override
protected Iterable hashesForProbe(byte[] originalForm, int dataSize, String name, int probe) {
Collection hashes = Lists.newArrayList();
for (String word : tokenize(new String(originalForm, Charsets.UTF_8))) {
hashes.add(hashForProbe(bytesForString(word), dataSize, name, probe));
}
return hashes;
}
/**
* Tokenizes a string using the simplest method. This should be over-ridden for more subtle
* tokenization.
* @see LuceneTextValueEncoder
*/
protected Iterable tokenize(CharSequence originalForm) {
return ON_NON_WORD.split(originalForm);
}
/**
* Converts a value into a form that would help a human understand the internals of how the value
* is being interpreted. For text-like things, this is likely to be a list of the terms found with
* associated weights (if any).
*
* @param originalForm The original form of the value as a string.
* @return A string that a human can read.
*/
@Override
public String asString(String originalForm) {
StringBuilder r = new StringBuilder();
r.append('[');
for (String word : tokenize(originalForm)) {
if (r.length() > 1) {
r.append(", ");
}
r.append(wordEncoder.asString(word));
}
r.append(']');
return r.toString();
}
public final void setWordEncoder(FeatureVectorEncoder wordEncoder) {
this.wordEncoder = wordEncoder;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy