All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.mahout.classifier.df.data.DataLoader Maven / Gradle / Ivy

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.classifier.df.data;

import com.google.common.base.Preconditions;
import com.google.common.collect.Lists;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.mahout.classifier.df.data.Dataset.Attribute;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Scanner;
import java.util.Set;
import java.util.regex.Pattern;

/**
 * Converts the input data to a Vector Array using the information given by the Dataset.
* Generates for each line a Vector that contains :
*
    *
  • double parsed value for NUMERICAL attributes
  • *
  • int value for CATEGORICAL and LABEL attributes
  • *
*
* adds an IGNORED first attribute that will contain a unique id for each instance, which is the line number * of the instance in the input data */ @Deprecated public final class DataLoader { private static final Logger log = LoggerFactory.getLogger(DataLoader.class); private static final Pattern SEPARATORS = Pattern.compile("[, ]"); private DataLoader() {} /** * Converts a comma-separated String to a Vector. * * @param attrs * attributes description * @param values * used to convert CATEGORICAL attribute values to Integer * @return false if there are missing values '?' or NUMERICAL attribute values is not numeric */ private static boolean parseString(Attribute[] attrs, Set[] values, CharSequence string, boolean regression) { String[] tokens = SEPARATORS.split(string); Preconditions.checkArgument(tokens.length == attrs.length, "Wrong number of attributes in the string: " + tokens.length + ". Must be: " + attrs.length); // extract tokens and check is there is any missing value for (int attr = 0; attr < attrs.length; attr++) { if (!attrs[attr].isIgnored() && "?".equals(tokens[attr])) { return false; // missing value } } for (int attr = 0; attr < attrs.length; attr++) { if (!attrs[attr].isIgnored()) { String token = tokens[attr]; if (attrs[attr].isCategorical() || (!regression && attrs[attr].isLabel())) { // update values if (values[attr] == null) { values[attr] = new HashSet<>(); } values[attr].add(token); } else { try { Double.parseDouble(token); } catch (NumberFormatException e) { return false; } } } } return true; } /** * Loads the data from a file * * @param fs * file system * @param fpath * data file path * @throws IOException * if any problem is encountered */ public static Data loadData(Dataset dataset, FileSystem fs, Path fpath) throws IOException { FSDataInputStream input = fs.open(fpath); Scanner scanner = new Scanner(input, "UTF-8"); List instances = new ArrayList<>(); DataConverter converter = new DataConverter(dataset); while (scanner.hasNextLine()) { String line = scanner.nextLine(); if (!line.isEmpty()) { Instance instance = converter.convert(line); if (instance != null) { instances.add(instance); } else { // missing values found log.warn("{}: missing values", instances.size()); } } else { log.warn("{}: empty string", instances.size()); } } scanner.close(); return new Data(dataset, instances); } /** Loads the data from multiple paths specified by pathes */ public static Data loadData(Dataset dataset, FileSystem fs, Path[] pathes) throws IOException { List instances = new ArrayList<>(); for (Path path : pathes) { Data loadedData = loadData(dataset, fs, path); for (int index = 0; index <= loadedData.size(); index++) { instances.add(loadedData.get(index)); } } return new Data(dataset, instances); } /** Loads the data from a String array */ public static Data loadData(Dataset dataset, String[] data) { List instances = new ArrayList<>(); DataConverter converter = new DataConverter(dataset); for (String line : data) { if (!line.isEmpty()) { Instance instance = converter.convert(line); if (instance != null) { instances.add(instance); } else { // missing values found log.warn("{}: missing values", instances.size()); } } else { log.warn("{}: empty string", instances.size()); } } return new Data(dataset, instances); } /** * Generates the Dataset by parsing the entire data * * @param descriptor attributes description * @param regression if true, the label is numerical * @param fs file system * @param path data path */ public static Dataset generateDataset(CharSequence descriptor, boolean regression, FileSystem fs, Path path) throws DescriptorException, IOException { Attribute[] attrs = DescriptorUtils.parseDescriptor(descriptor); FSDataInputStream input = fs.open(path); Scanner scanner = new Scanner(input, "UTF-8"); // used to convert CATEGORICAL attribute to Integer @SuppressWarnings("unchecked") Set[] valsets = new Set[attrs.length]; int size = 0; while (scanner.hasNextLine()) { String line = scanner.nextLine(); if (!line.isEmpty()) { if (parseString(attrs, valsets, line, regression)) { size++; } } } scanner.close(); @SuppressWarnings("unchecked") List[] values = new List[attrs.length]; for (int i = 0; i < valsets.length; i++) { if (valsets[i] != null) { values[i] = Lists.newArrayList(valsets[i]); } } return new Dataset(attrs, values, size, regression); } /** * Generates the Dataset by parsing the entire data * * @param descriptor * attributes description */ public static Dataset generateDataset(CharSequence descriptor, boolean regression, String[] data) throws DescriptorException { Attribute[] attrs = DescriptorUtils.parseDescriptor(descriptor); // used to convert CATEGORICAL attributes to Integer @SuppressWarnings("unchecked") Set[] valsets = new Set[attrs.length]; int size = 0; for (String aData : data) { if (!aData.isEmpty()) { if (parseString(attrs, valsets, aData, regression)) { size++; } } } @SuppressWarnings("unchecked") List[] values = new List[attrs.length]; for (int i = 0; i < valsets.length; i++) { if (valsets[i] != null) { values[i] = Lists.newArrayList(valsets[i]); } } return new Dataset(attrs, values, size, regression); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy