org.apache.mahout.clustering.iterator.FuzzyKMeansClusteringPolicy Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.clustering.iterator;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.classify.ClusterClassifier;
import org.apache.mahout.clustering.fuzzykmeans.FuzzyKMeansClusterer;
import org.apache.mahout.clustering.fuzzykmeans.SoftCluster;
import org.apache.mahout.math.Vector;
/**
* This is a probability-weighted clustering policy, suitable for fuzzy k-means
* clustering
*
*/
public class FuzzyKMeansClusteringPolicy extends AbstractClusteringPolicy {
private double m = 2;
private double convergenceDelta = 0.05;
public FuzzyKMeansClusteringPolicy() {
}
public FuzzyKMeansClusteringPolicy(double m, double convergenceDelta) {
this.m = m;
this.convergenceDelta = convergenceDelta;
}
@Override
public Vector select(Vector probabilities) {
return probabilities;
}
@Override
public Vector classify(Vector data, ClusterClassifier prior) {
Collection clusters = new ArrayList<>();
List distances = new ArrayList<>();
for (Cluster model : prior.getModels()) {
SoftCluster sc = (SoftCluster) model;
clusters.add(sc);
distances.add(sc.getMeasure().distance(data, sc.getCenter()));
}
FuzzyKMeansClusterer fuzzyKMeansClusterer = new FuzzyKMeansClusterer();
fuzzyKMeansClusterer.setM(m);
return fuzzyKMeansClusterer.computePi(clusters, distances);
}
@Override
public void write(DataOutput out) throws IOException {
out.writeDouble(m);
out.writeDouble(convergenceDelta);
}
@Override
public void readFields(DataInput in) throws IOException {
this.m = in.readDouble();
this.convergenceDelta = in.readDouble();
}
@Override
public void close(ClusterClassifier posterior) {
for (Cluster cluster : posterior.getModels()) {
((org.apache.mahout.clustering.kmeans.Kluster) cluster).calculateConvergence(convergenceDelta);
cluster.computeParameters();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy