org.apache.mahout.drivers.TrainNBDriver.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-spark_2.10 Show documentation
Show all versions of mahout-spark_2.10 Show documentation
Mahout Bindings for Apache Spark
/*
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package org.apache.mahout.drivers
import org.apache.mahout.classifier.naivebayes.{SparkNaiveBayes, _}
import org.apache.mahout.common.Hadoop1HDFSUtil
import org.apache.mahout.math.drm
import org.apache.mahout.math.drm.DrmLike
import scala.collection.immutable.HashMap
object TrainNBDriver extends MahoutSparkDriver {
// define only the options specific to TrainNB
private final val trainNBOptipns = HashMap[String, Any](
"appName" -> "TrainNBDriver")
/**
* @param args Command line args, if empty a help message is printed.
*/
override def main(args: Array[String]): Unit = {
parser = new MahoutSparkOptionParser(programName = "spark-trainnb") {
head("spark-trainnb", "Mahout 0.10.0")
// Input output options, non-driver specific
parseIOOptions(numInputs = 1)
// Algorithm control options--driver specific
opts = opts ++ trainNBOptipns
note("\nAlgorithm control options:")
// default trainComplementary is false
opts = opts + ("trainComplementary" -> false)
opt[Unit]("trainComplementary") abbr "c" action { (_, options) =>
options + ("trainComplementary" -> true)
} text "Train a complementary model, Default: false."
// Laplace smoothing paramater default is 1.0
opts = opts + ("alphaI" -> 1.0)
opt[Double]("alphaI") abbr "a" action { (x, options) =>
options + ("alphaI" -> x)
} text "Laplace smothing factor default is 1.0" validate { x =>
if (x > 0) success else failure("Option --alphaI must be > 0")
}
// Overwrite the output directory (with the model) if it exists? Default: false
opts = opts + ("overwrite" -> false)
opt[Unit]("overwrite") abbr "ow" action { (_, options) =>
options + ("overwrite" -> true)
} text "Overwrite the output directory (with the model) if it exists? Default: false"
// Spark config options--not driver specific
parseSparkOptions()
help("help") abbr "h" text "prints this usage text\n"
}
parser.parse(args, parser.opts) map { opts =>
parser.opts = opts
process
}
}
/** Read the training set from inputPath/part-x-00000 sequence file of form */
private def readTrainingSet(): DrmLike[_]= {
val inputPath = parser.opts("input").asInstanceOf[String]
val trainingSet= drm.drmDfsRead(inputPath)
trainingSet
}
override def process(): Unit = {
start()
val complementary = parser.opts("trainComplementary").asInstanceOf[Boolean]
val outputPath = parser.opts("output").asInstanceOf[String]
val alpha = parser.opts("alphaI").asInstanceOf[Double]
val overwrite = parser.opts("overwrite").asInstanceOf[Boolean]
val fullPathToModel = outputPath + NBModel.modelBaseDirectory
if (overwrite) {
Hadoop1HDFSUtil.delete(fullPathToModel)
}
val trainingSet = readTrainingSet()
// Use Spark-Optimized Naive Bayes here to extract labels and aggregate options
val (labelIndex, aggregatedObservations) = SparkNaiveBayes.extractLabelsAndAggregateObservations(trainingSet)
val model = SparkNaiveBayes.train(aggregatedObservations, labelIndex, complementary, alpha.toFloat)
model.dfsWrite(outputPath)
stop()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy