All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.maven.model.interpolation.reflection.MethodMap Maven / Gradle / Ivy

Go to download

The effective model builder, with inheritance, profile activation, interpolation, ...

There is a newer version: 4.0.0-beta-5
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.maven.model.interpolation.reflection;

import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

class MethodMap {
    private static final int MORE_SPECIFIC = 0;

    private static final int LESS_SPECIFIC = 1;

    private static final int INCOMPARABLE = 2;

    /**
     * Keep track of all methods with the same name.
     */
    private final Map> methodByNameMap = new Hashtable<>();

    /**
     * Add a method to a list of methods by name.
     * For a particular class we are keeping track
     * of all the methods with the same name.
     *
     * @param method The method
     */
    void add(Method method) {
        String methodName = method.getName();

        List l = get(methodName);

        if (l == null) {
            l = new ArrayList<>();
            methodByNameMap.put(methodName, l);
        }

        l.add(method);
    }

    /**
     * Return a list of methods with the same name.
     *
     * @param key The name of the method.
     * @return List list of methods
     */
    List get(String key) {
        return methodByNameMap.get(key);
    }

    /**
     * Find a method.  Attempts to find the
     * most specific applicable method using the
     * algorithm described in the JLS section
     * 15.12.2 (with the exception that it can't
     * distinguish a primitive type argument from
     * an object type argument, since in reflection
     * primitive type arguments are represented by
     * their object counterparts, so for an argument of
     * type (say) java.lang.Integer, it will not be able
     * to decide between a method that takes int and a
     * method that takes java.lang.Integer as a parameter.
     * 

* This turns out to be a relatively rare case * where this is needed - however, functionality * like this is needed. * * @param methodName name of method * @param args the actual arguments with which the method is called * @return the most specific applicable method, or null if no * method is applicable. * @throws AmbiguousException if there is more than one maximally * specific applicable method */ Method find(String methodName, Object... args) throws AmbiguousException { List methodList = get(methodName); if (methodList == null) { return null; } int l = args.length; Class[] classes = new Class[l]; for (int i = 0; i < l; ++i) { Object arg = args[i]; // if we are careful down below, a null argument goes in there // so we can know that the null was passed to the method classes[i] = arg == null ? null : arg.getClass(); } return getMostSpecific(methodList, classes); } /** * simple distinguishable exception, used when * we run across ambiguous overloading */ static class AmbiguousException extends Exception { private static final long serialVersionUID = 751688436639650618L; } private static Method getMostSpecific(List methods, Class... classes) throws AmbiguousException { LinkedList applicables = getApplicables(methods, classes); if (applicables.isEmpty()) { return null; } if (applicables.size() == 1) { return applicables.getFirst(); } // This list will contain the maximally specific methods. Hopefully at // the end of the below loop, the list will contain exactly one method, // (the most specific method) otherwise we have ambiguity. LinkedList maximals = new LinkedList<>(); for (Method app : applicables) { Class[] appArgs = app.getParameterTypes(); boolean lessSpecific = false; for (Iterator maximal = maximals.iterator(); !lessSpecific && maximal.hasNext(); ) { Method max = maximal.next(); switch (moreSpecific(appArgs, max.getParameterTypes())) { case MORE_SPECIFIC: // This method is more specific than the previously // known maximally specific, so remove the old maximum. maximal.remove(); break; case LESS_SPECIFIC: // This method is less specific than some of the // currently known maximally specific methods, so we // won't add it into the set of maximally specific // methods lessSpecific = true; break; default: } } if (!lessSpecific) { maximals.addLast(app); } } if (maximals.size() > 1) { // We have more than one maximally specific method throw new AmbiguousException(); } return maximals.getFirst(); } /** * Determines which method signature (represented by a class array) is more * specific. This defines a partial ordering on the method signatures. * * @param c1 first signature to compare * @param c2 second signature to compare * @return MORE_SPECIFIC if c1 is more specific than c2, LESS_SPECIFIC if * c1 is less specific than c2, INCOMPARABLE if they are incomparable. */ private static int moreSpecific(Class[] c1, Class[] c2) { boolean c1MoreSpecific = false; boolean c2MoreSpecific = false; for (int i = 0; i < c1.length; ++i) { if (c1[i] != c2[i]) { c1MoreSpecific = c1MoreSpecific || isStrictMethodInvocationConvertible(c2[i], c1[i]); c2MoreSpecific = c2MoreSpecific || isStrictMethodInvocationConvertible(c1[i], c2[i]); } } if (c1MoreSpecific) { if (c2MoreSpecific) { // Incomparable due to cross-assignable arguments (i.e. // foo(String, Object) vs. foo(Object, String)) return INCOMPARABLE; } return MORE_SPECIFIC; } if (c2MoreSpecific) { return LESS_SPECIFIC; } // Incomparable due to non-related arguments (i.e. // foo(Runnable) vs. foo(Serializable)) return INCOMPARABLE; } /** * Returns all methods that are applicable to actual argument types. * * @param methods list of all candidate methods * @param classes the actual types of the arguments * @return a list that contains only applicable methods (number of * formal and actual arguments matches, and argument types are assignable * to formal types through a method invocation conversion). */ private static LinkedList getApplicables(List methods, Class... classes) { LinkedList list = new LinkedList<>(); for (Method method : methods) { if (isApplicable(method, classes)) { list.add(method); } } return list; } /** * Returns true if the supplied method is applicable to actual * argument types. * * @param method The method to check for applicability * @param classes The arguments * @return true if the method applies to the parameter types */ private static boolean isApplicable(Method method, Class... classes) { Class[] methodArgs = method.getParameterTypes(); if (methodArgs.length != classes.length) { return false; } for (int i = 0; i < classes.length; ++i) { if (!isMethodInvocationConvertible(methodArgs[i], classes[i])) { return false; } } return true; } /** * Determines whether a type represented by a class object is * convertible to another type represented by a class object using a * method invocation conversion, treating object types of primitive * types as if they were primitive types (that is, a Boolean actual * parameter type matches boolean primitive formal type). This behavior * is because this method is used to determine applicable methods for * an actual parameter list, and primitive types are represented by * their object duals in reflective method calls. * * @param formal the formal parameter type to which the actual * parameter type should be convertible * @param actual the actual parameter type. * @return true if either formal type is assignable from actual type, * or formal is a primitive type and actual is its corresponding object * type or an object type of a primitive type that can be converted to * the formal type. */ private static boolean isMethodInvocationConvertible(Class formal, Class actual) { // if it's a null, it means the arg was null if (actual == null && !formal.isPrimitive()) { return true; } // Check for identity or widening reference conversion if (actual != null && formal.isAssignableFrom(actual)) { return true; } // Check for boxing with widening primitive conversion. Note that // actual parameters are never primitives. if (formal.isPrimitive()) { if (formal == Boolean.TYPE && actual == Boolean.class) { return true; } if (formal == Character.TYPE && actual == Character.class) { return true; } if (formal == Byte.TYPE && actual == Byte.class) { return true; } if (formal == Short.TYPE && (actual == Short.class || actual == Byte.class)) { return true; } if (formal == Integer.TYPE && (actual == Integer.class || actual == Short.class || actual == Byte.class)) { return true; } if (formal == Long.TYPE && (actual == Long.class || actual == Integer.class || actual == Short.class || actual == Byte.class)) { return true; } if (formal == Float.TYPE && (actual == Float.class || actual == Long.class || actual == Integer.class || actual == Short.class || actual == Byte.class)) { return true; } if (formal == Double.TYPE && (actual == Double.class || actual == Float.class || actual == Long.class || actual == Integer.class || actual == Short.class || actual == Byte.class)) { return true; } } return false; } /** * Determines whether a type represented by a class object is * convertible to another type represented by a class object using a * method invocation conversion, without matching object and primitive * types. This method is used to determine the more specific type when * comparing signatures of methods. * * @param formal the formal parameter type to which the actual * parameter type should be convertible * @param actual the actual parameter type. * @return true if either formal type is assignable from actual type, * or formal and actual are both primitive types and actual can be * subject to widening conversion to formal. */ private static boolean isStrictMethodInvocationConvertible(Class formal, Class actual) { // we shouldn't get a null into, but if so if (actual == null && !formal.isPrimitive()) { return true; } // Check for identity or widening reference conversion if (formal.isAssignableFrom(actual)) { return true; } // Check for widening primitive conversion. if (formal.isPrimitive()) { if (formal == Short.TYPE && (actual == Byte.TYPE)) { return true; } if (formal == Integer.TYPE && (actual == Short.TYPE || actual == Byte.TYPE)) { return true; } if (formal == Long.TYPE && (actual == Integer.TYPE || actual == Short.TYPE || actual == Byte.TYPE)) { return true; } if (formal == Float.TYPE && (actual == Long.TYPE || actual == Integer.TYPE || actual == Short.TYPE || actual == Byte.TYPE)) { return true; } if (formal == Double.TYPE && (actual == Float.TYPE || actual == Long.TYPE || actual == Integer.TYPE || actual == Short.TYPE || actual == Byte.TYPE)) { return true; } } return false; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy