Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.apache.myfaces.shared_tomahawk.util.ConcurrentLRUCache Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.myfaces.shared_tomahawk.util;
import java.lang.ref.WeakReference;
import java.util.Arrays;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.TreeSet;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantLock;
/**
* A LRU cache implementation based upon ConcurrentHashMap and other techniques to reduce
* contention and synchronization overhead to utilize multiple CPU cores more effectively.
*
* Note that the implementation does not follow a true LRU (least-recently-used) eviction
* strategy. Instead it strives to remove least recently used items but when the initial
* cleanup does not remove enough items to reach the 'acceptableWaterMark' limit, it can
* remove more items forcefully regardless of access order.
*
*
* @since solr 1.4
* @see org.apache.solr.util.ConcurrentLRUCache
*/
public class ConcurrentLRUCache
{
//private static Logger log = Logger.getLogger(ConcurrentLRUCache.class
// .getName());
private final ConcurrentHashMap> map;
private final int upperWaterMark;
private final int lowerWaterMark;
private final ReentrantLock markAndSweepLock = new ReentrantLock(true);
private boolean isCleaning = false; // not volatile... piggybacked on other volatile vars
private final boolean newThreadForCleanup;
private volatile boolean islive = true;
private final Stats stats = new Stats();
private final int acceptableWaterMark;
private long oldestEntry = 0; // not volatile, only accessed in the cleaning method
private final EvictionListener evictionListener;
private CleanupThread cleanupThread;
public ConcurrentLRUCache(int upperWaterMark, final int lowerWaterMark,
int acceptableWatermark, int initialSize, boolean runCleanupThread,
boolean runNewThreadForCleanup,
EvictionListener evictionListener)
{
if (upperWaterMark < 1)
{
throw new IllegalArgumentException("upperWaterMark must be > 0");
}
if (lowerWaterMark >= upperWaterMark)
{
throw new IllegalArgumentException(
"lowerWaterMark must be < upperWaterMark");
}
map = new ConcurrentHashMap>(initialSize);
newThreadForCleanup = runNewThreadForCleanup;
this.upperWaterMark = upperWaterMark;
this.lowerWaterMark = lowerWaterMark;
this.acceptableWaterMark = acceptableWatermark;
this.evictionListener = evictionListener;
if (runCleanupThread)
{
cleanupThread = new CleanupThread(this);
cleanupThread.start();
}
}
public ConcurrentLRUCache(int size, int lowerWatermark)
{
this(size, lowerWatermark, (int) Math
.floor((lowerWatermark + size) / 2), (int) Math
.ceil(0.75 * size), false, false, null);
}
public void setAlive(boolean live)
{
islive = live;
}
public V get(K key)
{
CacheEntry e = map.get(key);
if (e == null)
{
if (islive)
{
stats.missCounter.incrementAndGet();
}
return null;
}
if (islive)
{
e.lastAccessed = stats.accessCounter.incrementAndGet();
}
return e.value;
}
public V remove(K key)
{
CacheEntry cacheEntry = map.remove(key);
if (cacheEntry != null)
{
stats.size.decrementAndGet();
return cacheEntry.value;
}
return null;
}
public V put(K key, V val)
{
if (val == null)
{
return null;
}
CacheEntry e = new CacheEntry(key, val,
stats.accessCounter.incrementAndGet());
CacheEntry oldCacheEntry = map.put(key, e);
int currentSize;
if (oldCacheEntry == null)
{
currentSize = stats.size.incrementAndGet();
}
else
{
currentSize = stats.size.get();
}
if (islive)
{
stats.putCounter.incrementAndGet();
}
else
{
stats.nonLivePutCounter.incrementAndGet();
}
// Check if we need to clear out old entries from the cache.
// isCleaning variable is checked instead of markAndSweepLock.isLocked()
// for performance because every put invokation will check until
// the size is back to an acceptable level.
//
// There is a race between the check and the call to markAndSweep, but
// it's unimportant because markAndSweep actually aquires the lock or returns if it can't.
//
// Thread safety note: isCleaning read is piggybacked (comes after) other volatile reads
// in this method.
if (currentSize > upperWaterMark && !isCleaning)
{
if (newThreadForCleanup)
{
new Thread()
{
@Override
public void run()
{
markAndSweep();
}
}.start();
}
else if (cleanupThread != null)
{
cleanupThread.wakeThread();
}
else
{
markAndSweep();
}
}
return oldCacheEntry == null ? null : oldCacheEntry.value;
}
/**
* Removes items from the cache to bring the size down
* to an acceptable value ('acceptableWaterMark').
*
* It is done in two stages. In the first stage, least recently used items are evicted.
* If, after the first stage, the cache size is still greater than 'acceptableSize'
* config parameter, the second stage takes over.
*
* The second stage is more intensive and tries to bring down the cache size
* to the 'lowerWaterMark' config parameter.
*/
private void markAndSweep()
{
// if we want to keep at least 1000 entries, then timestamps of
// current through current-1000 are guaranteed not to be the oldest (but that does
// not mean there are 1000 entries in that group... it's acutally anywhere between
// 1 and 1000).
// Also, if we want to remove 500 entries, then
// oldestEntry through oldestEntry+500 are guaranteed to be
// removed (however many there are there).
if (!markAndSweepLock.tryLock())
{
return;
}
try
{
long oldestEntry = this.oldestEntry;
isCleaning = true;
this.oldestEntry = oldestEntry; // volatile write to make isCleaning visible
long timeCurrent = stats.accessCounter.get();
int sz = stats.size.get();
int numRemoved = 0;
int numKept = 0;
long newestEntry = timeCurrent;
long newNewestEntry = -1;
long newOldestEntry = Long.MAX_VALUE;
int wantToKeep = lowerWaterMark;
int wantToRemove = sz - lowerWaterMark;
@SuppressWarnings("unchecked")
// generic array's are anoying
CacheEntry[] eset = new CacheEntry[sz];
int eSize = 0;
// System.out.println("newestEntry="+newestEntry + " oldestEntry="+oldestEntry);
// System.out.println("items removed:" + numRemoved + " numKept=" + numKept +
// " esetSz="+ eSize + " sz-numRemoved=" + (sz-numRemoved));
for (CacheEntry ce : map.values())
{
// set lastAccessedCopy to avoid more volatile reads
ce.lastAccessedCopy = ce.lastAccessed;
long thisEntry = ce.lastAccessedCopy;
// since the wantToKeep group is likely to be bigger than wantToRemove, check it first
if (thisEntry > newestEntry - wantToKeep)
{
// this entry is guaranteed not to be in the bottom
// group, so do nothing.
numKept++;
newOldestEntry = Math.min(thisEntry, newOldestEntry);
}
else if (thisEntry < oldestEntry + wantToRemove)
{ // entry in bottom group?
// this entry is guaranteed to be in the bottom group
// so immediately remove it from the map.
evictEntry(ce.key);
numRemoved++;
}
else
{
// This entry *could* be in the bottom group.
// Collect these entries to avoid another full pass... this is wasted
// effort if enough entries are normally removed in this first pass.
// An alternate impl could make a full second pass.
if (eSize < eset.length - 1)
{
eset[eSize++] = ce;
newNewestEntry = Math.max(thisEntry, newNewestEntry);
newOldestEntry = Math.min(thisEntry, newOldestEntry);
}
}
}
// System.out.println("items removed:" + numRemoved + " numKept=" + numKept +
// " esetSz="+ eSize + " sz-numRemoved=" + (sz-numRemoved));
// TODO: allow this to be customized in the constructor?
int numPasses = 1; // maximum number of linear passes over the data
// if we didn't remove enough entries, then make more passes
// over the values we collected, with updated min and max values.
while (sz - numRemoved > acceptableWaterMark && --numPasses >= 0)
{
oldestEntry = newOldestEntry == Long.MAX_VALUE ? oldestEntry
: newOldestEntry;
newOldestEntry = Long.MAX_VALUE;
newestEntry = newNewestEntry;
newNewestEntry = -1;
wantToKeep = lowerWaterMark - numKept;
wantToRemove = sz - lowerWaterMark - numRemoved;
// iterate backward to make it easy to remove items.
for (int i = eSize - 1; i >= 0; i--)
{
CacheEntry ce = eset[i];
long thisEntry = ce.lastAccessedCopy;
if (thisEntry > newestEntry - wantToKeep)
{
// this entry is guaranteed not to be in the bottom
// group, so do nothing but remove it from the eset.
numKept++;
// remove the entry by moving the last element to it's position
eset[i] = eset[eSize - 1];
eSize--;
newOldestEntry = Math.min(thisEntry, newOldestEntry);
}
else if (thisEntry < oldestEntry + wantToRemove)
{ // entry in bottom group?
// this entry is guaranteed to be in the bottom group
// so immediately remove it from the map.
evictEntry(ce.key);
numRemoved++;
// remove the entry by moving the last element to it's position
eset[i] = eset[eSize - 1];
eSize--;
}
else
{
// This entry *could* be in the bottom group, so keep it in the eset,
// and update the stats.
newNewestEntry = Math.max(thisEntry, newNewestEntry);
newOldestEntry = Math.min(thisEntry, newOldestEntry);
}
}
// System.out.println("items removed:" + numRemoved + " numKept=" +
// numKept + " esetSz="+ eSize + " sz-numRemoved=" + (sz-numRemoved));
}
// if we still didn't remove enough entries, then make another pass while
// inserting into a priority queue
if (sz - numRemoved > acceptableWaterMark)
{
oldestEntry = newOldestEntry == Long.MAX_VALUE ? oldestEntry
: newOldestEntry;
newOldestEntry = Long.MAX_VALUE;
newestEntry = newNewestEntry;
newNewestEntry = -1;
wantToKeep = lowerWaterMark - numKept;
wantToRemove = sz - lowerWaterMark - numRemoved;
PQueue queue = new PQueue(wantToRemove);
for (int i = eSize - 1; i >= 0; i--)
{
CacheEntry ce = eset[i];
long thisEntry = ce.lastAccessedCopy;
if (thisEntry > newestEntry - wantToKeep)
{
// this entry is guaranteed not to be in the bottom
// group, so do nothing but remove it from the eset.
numKept++;
// removal not necessary on last pass.
// eset[i] = eset[eSize-1];
// eSize--;
newOldestEntry = Math.min(thisEntry, newOldestEntry);
}
else if (thisEntry < oldestEntry + wantToRemove)
{ // entry in bottom group?
// this entry is guaranteed to be in the bottom group
// so immediately remove it.
evictEntry(ce.key);
numRemoved++;
// removal not necessary on last pass.
// eset[i] = eset[eSize-1];
// eSize--;
}
else
{
// This entry *could* be in the bottom group.
// add it to the priority queue
// everything in the priority queue will be removed, so keep track of
// the lowest value that ever comes back out of the queue.
// first reduce the size of the priority queue to account for
// the number of items we have already removed while executing
// this loop so far.
queue.myMaxSize = sz - lowerWaterMark - numRemoved;
while (queue.size() > queue.myMaxSize
&& queue.size() > 0)
{
CacheEntry otherEntry = (CacheEntry) queue.pop();
newOldestEntry = Math
.min(otherEntry.lastAccessedCopy,
newOldestEntry);
}
if (queue.myMaxSize <= 0)
{
break;
}
Object o = queue.myInsertWithOverflow(ce);
if (o != null)
{
newOldestEntry = Math.min(
((CacheEntry) o).lastAccessedCopy,
newOldestEntry);
}
}
}
// Now delete everything in the priority queue.
// avoid using pop() since order doesn't matter anymore
for (CacheEntry ce : queue.getValues())
{
if (ce == null)
{
continue;
}
evictEntry(ce.key);
numRemoved++;
}
// System.out.println("items removed:" + numRemoved + " numKept=" + numKept +
// " initialQueueSize="+ wantToRemove + " finalQueueSize=" +
// queue.size() + " sz-numRemoved=" + (sz-numRemoved));
}
oldestEntry = newOldestEntry == Long.MAX_VALUE ? oldestEntry
: newOldestEntry;
this.oldestEntry = oldestEntry;
}
finally
{
isCleaning = false; // set before markAndSweep.unlock() for visibility
markAndSweepLock.unlock();
}
}
private static class PQueue extends PriorityQueue>
{
int myMaxSize;
final Object[] heap;
PQueue(int maxSz)
{
super(maxSz);
heap = getHeapArray();
myMaxSize = maxSz;
}
@SuppressWarnings("unchecked")
Iterable> getValues()
{
return (Iterable) Collections.unmodifiableCollection(Arrays
.asList(heap));
}
@Override
protected boolean lessThan(CacheEntry a, CacheEntry b)
{
// reverse the parameter order so that the queue keeps the oldest items
return b.lastAccessedCopy < a.lastAccessedCopy;
}
// necessary because maxSize is private in base class
@SuppressWarnings("unchecked")
public CacheEntry myInsertWithOverflow(CacheEntry element)
{
if (size() < myMaxSize)
{
add(element);
return null;
}
else if (size() > 0
&& !lessThan(element, (CacheEntry) heap[1]))
{
CacheEntry ret = (CacheEntry) heap[1];
heap[1] = element;
updateTop();
return ret;
}
else
{
return element;
}
}
}
private void evictEntry(K key)
{
CacheEntry o = map.remove(key);
if (o == null)
{
return;
}
stats.size.decrementAndGet();
stats.evictionCounter.incrementAndGet();
if (evictionListener != null)
{
evictionListener.evictedEntry(o.key, o.value);
}
}
/**
* Returns 'n' number of oldest accessed entries present in this cache.
*
* This uses a TreeSet to collect the 'n' oldest items ordered by ascending last access time
* and returns a LinkedHashMap containing 'n' or less than 'n' entries.
* @param n the number of oldest items needed
* @return a LinkedHashMap containing 'n' or less than 'n' entries
*/
public Map getOldestAccessedItems(int n)
{
Map result = new LinkedHashMap();
if (n <= 0)
{
return result;
}
TreeSet> tree = new TreeSet>();
markAndSweepLock.lock();
try
{
for (Map.Entry> entry : map.entrySet())
{
CacheEntry ce = entry.getValue();
ce.lastAccessedCopy = ce.lastAccessed;
if (tree.size() < n)
{
tree.add(ce);
}
else
{
if (ce.lastAccessedCopy < tree.first().lastAccessedCopy)
{
tree.remove(tree.first());
tree.add(ce);
}
}
}
}
finally
{
markAndSweepLock.unlock();
}
for (CacheEntry e : tree)
{
result.put(e.key, e.value);
}
return result;
}
public Map getLatestAccessedItems(int n)
{
Map result = new LinkedHashMap();
if (n <= 0)
{
return result;
}
TreeSet> tree = new TreeSet>();
// we need to grab the lock since we are changing lastAccessedCopy
markAndSweepLock.lock();
try
{
for (Map.Entry> entry : map.entrySet())
{
CacheEntry ce = entry.getValue();
ce.lastAccessedCopy = ce.lastAccessed;
if (tree.size() < n)
{
tree.add(ce);
}
else
{
if (ce.lastAccessedCopy > tree.last().lastAccessedCopy)
{
tree.remove(tree.last());
tree.add(ce);
}
}
}
}
finally
{
markAndSweepLock.unlock();
}
for (CacheEntry e : tree)
{
result.put(e.key, e.value);
}
return result;
}
public int size()
{
return stats.size.get();
}
public void clear()
{
map.clear();
}
public Map> getMap()
{
return map;
}
private static class CacheEntry implements
Comparable>
{
K key;
V value;
volatile long lastAccessed = 0;
long lastAccessedCopy = 0;
public CacheEntry(K key, V value, long lastAccessed)
{
this.key = key;
this.value = value;
this.lastAccessed = lastAccessed;
}
public void setLastAccessed(long lastAccessed)
{
this.lastAccessed = lastAccessed;
}
public int compareTo(CacheEntry that)
{
if (this.lastAccessedCopy == that.lastAccessedCopy)
{
return 0;
}
return this.lastAccessedCopy < that.lastAccessedCopy ? 1 : -1;
}
@Override
public int hashCode()
{
return value.hashCode();
}
@Override
public boolean equals(Object obj)
{
return value.equals(obj);
}
@Override
public String toString()
{
return "key: " + key + " value: " + value + " lastAccessed:"
+ lastAccessed;
}
}
private boolean isDestroyed = false;
public void destroy()
{
try
{
if (cleanupThread != null)
{
cleanupThread.stopThread();
}
}
finally
{
isDestroyed = true;
}
}
public Stats getStats()
{
return stats;
}
public static class Stats
{
private final AtomicLong accessCounter = new AtomicLong(0);
private final AtomicLong putCounter = new AtomicLong(0);
private final AtomicLong nonLivePutCounter = new AtomicLong(0);
private final AtomicLong missCounter = new AtomicLong();
private final AtomicInteger size = new AtomicInteger();
private AtomicLong evictionCounter = new AtomicLong();
public long getCumulativeLookups()
{
return (accessCounter.get() - putCounter.get() - nonLivePutCounter
.get()) + missCounter.get();
}
public long getCumulativeHits()
{
return accessCounter.get() - putCounter.get()
- nonLivePutCounter.get();
}
public long getCumulativePuts()
{
return putCounter.get();
}
public long getCumulativeEvictions()
{
return evictionCounter.get();
}
public int getCurrentSize()
{
return size.get();
}
public long getCumulativeNonLivePuts()
{
return nonLivePutCounter.get();
}
public long getCumulativeMisses()
{
return missCounter.get();
}
public void add(Stats other)
{
accessCounter.addAndGet(other.accessCounter.get());
putCounter.addAndGet(other.putCounter.get());
nonLivePutCounter.addAndGet(other.nonLivePutCounter.get());
missCounter.addAndGet(other.missCounter.get());
evictionCounter.addAndGet(other.evictionCounter.get());
size.set(Math.max(size.get(), other.size.get()));
}
}
public static interface EvictionListener
{
public void evictedEntry(K key, V value);
}
private static class CleanupThread extends Thread
{
private WeakReference cache;
private boolean stop = false;
public CleanupThread(ConcurrentLRUCache c)
{
cache = new WeakReference(c);
}
@Override
public void run()
{
while (true)
{
synchronized (this)
{
if (stop)
{
break;
}
try
{
this.wait();
}
catch (InterruptedException e)
{
}
}
if (stop)
{
break;
}
ConcurrentLRUCache c = cache.get();
if (c == null)
{
break;
}
c.markAndSweep();
}
}
void wakeThread()
{
synchronized (this)
{
this.notify();
}
}
void stopThread()
{
synchronized (this)
{
stop = true;
this.notify();
}
}
}
@Override
protected void finalize() throws Throwable
{
try
{
if (!isDestroyed)
{
// This log message is useless, because it is not supposed to use
// thread cleanup strategy for this class.
//log.severe("ConcurrentLRUCache was not destroyed prior to finalize()," +
// " indicates a bug -- POSSIBLE RESOURCE LEAK!!!");
destroy();
}
}
finally
{
super.finalize();
}
}
}