All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.myfaces.shared_tomahawk.util.ConcurrentLRUCache Maven / Gradle / Ivy

There is a newer version: 4.2.9
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.myfaces.shared_tomahawk.util;

import java.lang.ref.WeakReference;
import java.util.Arrays;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.TreeSet;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantLock;

/**
 * A LRU cache implementation based upon ConcurrentHashMap and other techniques to reduce
 * contention and synchronization overhead to utilize multiple CPU cores more effectively.
 * 

* Note that the implementation does not follow a true LRU (least-recently-used) eviction * strategy. Instead it strives to remove least recently used items but when the initial * cleanup does not remove enough items to reach the 'acceptableWaterMark' limit, it can * remove more items forcefully regardless of access order. * * * @since solr 1.4 * @see org.apache.solr.util.ConcurrentLRUCache */ public class ConcurrentLRUCache { //private static Logger log = Logger.getLogger(ConcurrentLRUCache.class // .getName()); private final ConcurrentHashMap> map; private final int upperWaterMark; private final int lowerWaterMark; private final ReentrantLock markAndSweepLock = new ReentrantLock(true); private boolean isCleaning = false; // not volatile... piggybacked on other volatile vars private final boolean newThreadForCleanup; private volatile boolean islive = true; private final Stats stats = new Stats(); private final int acceptableWaterMark; private long oldestEntry = 0; // not volatile, only accessed in the cleaning method private final EvictionListener evictionListener; private CleanupThread cleanupThread; public ConcurrentLRUCache(int upperWaterMark, final int lowerWaterMark, int acceptableWatermark, int initialSize, boolean runCleanupThread, boolean runNewThreadForCleanup, EvictionListener evictionListener) { if (upperWaterMark < 1) { throw new IllegalArgumentException("upperWaterMark must be > 0"); } if (lowerWaterMark >= upperWaterMark) { throw new IllegalArgumentException( "lowerWaterMark must be < upperWaterMark"); } map = new ConcurrentHashMap>(initialSize); newThreadForCleanup = runNewThreadForCleanup; this.upperWaterMark = upperWaterMark; this.lowerWaterMark = lowerWaterMark; this.acceptableWaterMark = acceptableWatermark; this.evictionListener = evictionListener; if (runCleanupThread) { cleanupThread = new CleanupThread(this); cleanupThread.start(); } } public ConcurrentLRUCache(int size, int lowerWatermark) { this(size, lowerWatermark, (int) Math .floor((lowerWatermark + size) / 2), (int) Math .ceil(0.75 * size), false, false, null); } public void setAlive(boolean live) { islive = live; } public V get(K key) { CacheEntry e = map.get(key); if (e == null) { if (islive) { stats.missCounter.incrementAndGet(); } return null; } if (islive) { e.lastAccessed = stats.accessCounter.incrementAndGet(); } return e.value; } public V remove(K key) { CacheEntry cacheEntry = map.remove(key); if (cacheEntry != null) { stats.size.decrementAndGet(); return cacheEntry.value; } return null; } public V put(K key, V val) { if (val == null) { return null; } CacheEntry e = new CacheEntry(key, val, stats.accessCounter.incrementAndGet()); CacheEntry oldCacheEntry = map.put(key, e); int currentSize; if (oldCacheEntry == null) { currentSize = stats.size.incrementAndGet(); } else { currentSize = stats.size.get(); } if (islive) { stats.putCounter.incrementAndGet(); } else { stats.nonLivePutCounter.incrementAndGet(); } // Check if we need to clear out old entries from the cache. // isCleaning variable is checked instead of markAndSweepLock.isLocked() // for performance because every put invokation will check until // the size is back to an acceptable level. // // There is a race between the check and the call to markAndSweep, but // it's unimportant because markAndSweep actually aquires the lock or returns if it can't. // // Thread safety note: isCleaning read is piggybacked (comes after) other volatile reads // in this method. if (currentSize > upperWaterMark && !isCleaning) { if (newThreadForCleanup) { new Thread() { @Override public void run() { markAndSweep(); } }.start(); } else if (cleanupThread != null) { cleanupThread.wakeThread(); } else { markAndSweep(); } } return oldCacheEntry == null ? null : oldCacheEntry.value; } /** * Removes items from the cache to bring the size down * to an acceptable value ('acceptableWaterMark'). *

* It is done in two stages. In the first stage, least recently used items are evicted. * If, after the first stage, the cache size is still greater than 'acceptableSize' * config parameter, the second stage takes over. *

* The second stage is more intensive and tries to bring down the cache size * to the 'lowerWaterMark' config parameter. */ private void markAndSweep() { // if we want to keep at least 1000 entries, then timestamps of // current through current-1000 are guaranteed not to be the oldest (but that does // not mean there are 1000 entries in that group... it's acutally anywhere between // 1 and 1000). // Also, if we want to remove 500 entries, then // oldestEntry through oldestEntry+500 are guaranteed to be // removed (however many there are there). if (!markAndSweepLock.tryLock()) { return; } try { long oldestEntry = this.oldestEntry; isCleaning = true; this.oldestEntry = oldestEntry; // volatile write to make isCleaning visible long timeCurrent = stats.accessCounter.get(); int sz = stats.size.get(); int numRemoved = 0; int numKept = 0; long newestEntry = timeCurrent; long newNewestEntry = -1; long newOldestEntry = Long.MAX_VALUE; int wantToKeep = lowerWaterMark; int wantToRemove = sz - lowerWaterMark; @SuppressWarnings("unchecked") // generic array's are anoying CacheEntry[] eset = new CacheEntry[sz]; int eSize = 0; // System.out.println("newestEntry="+newestEntry + " oldestEntry="+oldestEntry); // System.out.println("items removed:" + numRemoved + " numKept=" + numKept + // " esetSz="+ eSize + " sz-numRemoved=" + (sz-numRemoved)); for (CacheEntry ce : map.values()) { // set lastAccessedCopy to avoid more volatile reads ce.lastAccessedCopy = ce.lastAccessed; long thisEntry = ce.lastAccessedCopy; // since the wantToKeep group is likely to be bigger than wantToRemove, check it first if (thisEntry > newestEntry - wantToKeep) { // this entry is guaranteed not to be in the bottom // group, so do nothing. numKept++; newOldestEntry = Math.min(thisEntry, newOldestEntry); } else if (thisEntry < oldestEntry + wantToRemove) { // entry in bottom group? // this entry is guaranteed to be in the bottom group // so immediately remove it from the map. evictEntry(ce.key); numRemoved++; } else { // This entry *could* be in the bottom group. // Collect these entries to avoid another full pass... this is wasted // effort if enough entries are normally removed in this first pass. // An alternate impl could make a full second pass. if (eSize < eset.length - 1) { eset[eSize++] = ce; newNewestEntry = Math.max(thisEntry, newNewestEntry); newOldestEntry = Math.min(thisEntry, newOldestEntry); } } } // System.out.println("items removed:" + numRemoved + " numKept=" + numKept + // " esetSz="+ eSize + " sz-numRemoved=" + (sz-numRemoved)); // TODO: allow this to be customized in the constructor? int numPasses = 1; // maximum number of linear passes over the data // if we didn't remove enough entries, then make more passes // over the values we collected, with updated min and max values. while (sz - numRemoved > acceptableWaterMark && --numPasses >= 0) { oldestEntry = newOldestEntry == Long.MAX_VALUE ? oldestEntry : newOldestEntry; newOldestEntry = Long.MAX_VALUE; newestEntry = newNewestEntry; newNewestEntry = -1; wantToKeep = lowerWaterMark - numKept; wantToRemove = sz - lowerWaterMark - numRemoved; // iterate backward to make it easy to remove items. for (int i = eSize - 1; i >= 0; i--) { CacheEntry ce = eset[i]; long thisEntry = ce.lastAccessedCopy; if (thisEntry > newestEntry - wantToKeep) { // this entry is guaranteed not to be in the bottom // group, so do nothing but remove it from the eset. numKept++; // remove the entry by moving the last element to it's position eset[i] = eset[eSize - 1]; eSize--; newOldestEntry = Math.min(thisEntry, newOldestEntry); } else if (thisEntry < oldestEntry + wantToRemove) { // entry in bottom group? // this entry is guaranteed to be in the bottom group // so immediately remove it from the map. evictEntry(ce.key); numRemoved++; // remove the entry by moving the last element to it's position eset[i] = eset[eSize - 1]; eSize--; } else { // This entry *could* be in the bottom group, so keep it in the eset, // and update the stats. newNewestEntry = Math.max(thisEntry, newNewestEntry); newOldestEntry = Math.min(thisEntry, newOldestEntry); } } // System.out.println("items removed:" + numRemoved + " numKept=" + // numKept + " esetSz="+ eSize + " sz-numRemoved=" + (sz-numRemoved)); } // if we still didn't remove enough entries, then make another pass while // inserting into a priority queue if (sz - numRemoved > acceptableWaterMark) { oldestEntry = newOldestEntry == Long.MAX_VALUE ? oldestEntry : newOldestEntry; newOldestEntry = Long.MAX_VALUE; newestEntry = newNewestEntry; newNewestEntry = -1; wantToKeep = lowerWaterMark - numKept; wantToRemove = sz - lowerWaterMark - numRemoved; PQueue queue = new PQueue(wantToRemove); for (int i = eSize - 1; i >= 0; i--) { CacheEntry ce = eset[i]; long thisEntry = ce.lastAccessedCopy; if (thisEntry > newestEntry - wantToKeep) { // this entry is guaranteed not to be in the bottom // group, so do nothing but remove it from the eset. numKept++; // removal not necessary on last pass. // eset[i] = eset[eSize-1]; // eSize--; newOldestEntry = Math.min(thisEntry, newOldestEntry); } else if (thisEntry < oldestEntry + wantToRemove) { // entry in bottom group? // this entry is guaranteed to be in the bottom group // so immediately remove it. evictEntry(ce.key); numRemoved++; // removal not necessary on last pass. // eset[i] = eset[eSize-1]; // eSize--; } else { // This entry *could* be in the bottom group. // add it to the priority queue // everything in the priority queue will be removed, so keep track of // the lowest value that ever comes back out of the queue. // first reduce the size of the priority queue to account for // the number of items we have already removed while executing // this loop so far. queue.myMaxSize = sz - lowerWaterMark - numRemoved; while (queue.size() > queue.myMaxSize && queue.size() > 0) { CacheEntry otherEntry = (CacheEntry) queue.pop(); newOldestEntry = Math .min(otherEntry.lastAccessedCopy, newOldestEntry); } if (queue.myMaxSize <= 0) { break; } Object o = queue.myInsertWithOverflow(ce); if (o != null) { newOldestEntry = Math.min( ((CacheEntry) o).lastAccessedCopy, newOldestEntry); } } } // Now delete everything in the priority queue. // avoid using pop() since order doesn't matter anymore for (CacheEntry ce : queue.getValues()) { if (ce == null) { continue; } evictEntry(ce.key); numRemoved++; } // System.out.println("items removed:" + numRemoved + " numKept=" + numKept + // " initialQueueSize="+ wantToRemove + " finalQueueSize=" + // queue.size() + " sz-numRemoved=" + (sz-numRemoved)); } oldestEntry = newOldestEntry == Long.MAX_VALUE ? oldestEntry : newOldestEntry; this.oldestEntry = oldestEntry; } finally { isCleaning = false; // set before markAndSweep.unlock() for visibility markAndSweepLock.unlock(); } } private static class PQueue extends PriorityQueue> { int myMaxSize; final Object[] heap; PQueue(int maxSz) { super(maxSz); heap = getHeapArray(); myMaxSize = maxSz; } @SuppressWarnings("unchecked") Iterable> getValues() { return (Iterable) Collections.unmodifiableCollection(Arrays .asList(heap)); } @Override protected boolean lessThan(CacheEntry a, CacheEntry b) { // reverse the parameter order so that the queue keeps the oldest items return b.lastAccessedCopy < a.lastAccessedCopy; } // necessary because maxSize is private in base class @SuppressWarnings("unchecked") public CacheEntry myInsertWithOverflow(CacheEntry element) { if (size() < myMaxSize) { add(element); return null; } else if (size() > 0 && !lessThan(element, (CacheEntry) heap[1])) { CacheEntry ret = (CacheEntry) heap[1]; heap[1] = element; updateTop(); return ret; } else { return element; } } } private void evictEntry(K key) { CacheEntry o = map.remove(key); if (o == null) { return; } stats.size.decrementAndGet(); stats.evictionCounter.incrementAndGet(); if (evictionListener != null) { evictionListener.evictedEntry(o.key, o.value); } } /** * Returns 'n' number of oldest accessed entries present in this cache. * * This uses a TreeSet to collect the 'n' oldest items ordered by ascending last access time * and returns a LinkedHashMap containing 'n' or less than 'n' entries. * @param n the number of oldest items needed * @return a LinkedHashMap containing 'n' or less than 'n' entries */ public Map getOldestAccessedItems(int n) { Map result = new LinkedHashMap(); if (n <= 0) { return result; } TreeSet> tree = new TreeSet>(); markAndSweepLock.lock(); try { for (Map.Entry> entry : map.entrySet()) { CacheEntry ce = entry.getValue(); ce.lastAccessedCopy = ce.lastAccessed; if (tree.size() < n) { tree.add(ce); } else { if (ce.lastAccessedCopy < tree.first().lastAccessedCopy) { tree.remove(tree.first()); tree.add(ce); } } } } finally { markAndSweepLock.unlock(); } for (CacheEntry e : tree) { result.put(e.key, e.value); } return result; } public Map getLatestAccessedItems(int n) { Map result = new LinkedHashMap(); if (n <= 0) { return result; } TreeSet> tree = new TreeSet>(); // we need to grab the lock since we are changing lastAccessedCopy markAndSweepLock.lock(); try { for (Map.Entry> entry : map.entrySet()) { CacheEntry ce = entry.getValue(); ce.lastAccessedCopy = ce.lastAccessed; if (tree.size() < n) { tree.add(ce); } else { if (ce.lastAccessedCopy > tree.last().lastAccessedCopy) { tree.remove(tree.last()); tree.add(ce); } } } } finally { markAndSweepLock.unlock(); } for (CacheEntry e : tree) { result.put(e.key, e.value); } return result; } public int size() { return stats.size.get(); } public void clear() { map.clear(); } public Map> getMap() { return map; } private static class CacheEntry implements Comparable> { K key; V value; volatile long lastAccessed = 0; long lastAccessedCopy = 0; public CacheEntry(K key, V value, long lastAccessed) { this.key = key; this.value = value; this.lastAccessed = lastAccessed; } public void setLastAccessed(long lastAccessed) { this.lastAccessed = lastAccessed; } public int compareTo(CacheEntry that) { if (this.lastAccessedCopy == that.lastAccessedCopy) { return 0; } return this.lastAccessedCopy < that.lastAccessedCopy ? 1 : -1; } @Override public int hashCode() { return value.hashCode(); } @Override public boolean equals(Object obj) { return value.equals(obj); } @Override public String toString() { return "key: " + key + " value: " + value + " lastAccessed:" + lastAccessed; } } private boolean isDestroyed = false; public void destroy() { try { if (cleanupThread != null) { cleanupThread.stopThread(); } } finally { isDestroyed = true; } } public Stats getStats() { return stats; } public static class Stats { private final AtomicLong accessCounter = new AtomicLong(0); private final AtomicLong putCounter = new AtomicLong(0); private final AtomicLong nonLivePutCounter = new AtomicLong(0); private final AtomicLong missCounter = new AtomicLong(); private final AtomicInteger size = new AtomicInteger(); private AtomicLong evictionCounter = new AtomicLong(); public long getCumulativeLookups() { return (accessCounter.get() - putCounter.get() - nonLivePutCounter .get()) + missCounter.get(); } public long getCumulativeHits() { return accessCounter.get() - putCounter.get() - nonLivePutCounter.get(); } public long getCumulativePuts() { return putCounter.get(); } public long getCumulativeEvictions() { return evictionCounter.get(); } public int getCurrentSize() { return size.get(); } public long getCumulativeNonLivePuts() { return nonLivePutCounter.get(); } public long getCumulativeMisses() { return missCounter.get(); } public void add(Stats other) { accessCounter.addAndGet(other.accessCounter.get()); putCounter.addAndGet(other.putCounter.get()); nonLivePutCounter.addAndGet(other.nonLivePutCounter.get()); missCounter.addAndGet(other.missCounter.get()); evictionCounter.addAndGet(other.evictionCounter.get()); size.set(Math.max(size.get(), other.size.get())); } } public static interface EvictionListener { public void evictedEntry(K key, V value); } private static class CleanupThread extends Thread { private WeakReference cache; private boolean stop = false; public CleanupThread(ConcurrentLRUCache c) { cache = new WeakReference(c); } @Override public void run() { while (true) { synchronized (this) { if (stop) { break; } try { this.wait(); } catch (InterruptedException e) { } } if (stop) { break; } ConcurrentLRUCache c = cache.get(); if (c == null) { break; } c.markAndSweep(); } } void wakeThread() { synchronized (this) { this.notify(); } } void stopThread() { synchronized (this) { stop = true; this.notify(); } } } @Override protected void finalize() throws Throwable { try { if (!isDestroyed) { // This log message is useless, because it is not supposed to use // thread cleanup strategy for this class. //log.severe("ConcurrentLRUCache was not destroyed prior to finalize()," + // " indicates a bug -- POSSIBLE RESOURCE LEAK!!!"); destroy(); } } finally { super.finalize(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy