All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.myfaces.shared_tomahawk.util.PriorityQueue Maven / Gradle / Ivy

Go to download

JSF components and utilities that can be used with any JSF implementation. This library is based on the JSF1.1 version of Tomahawk, but with minor source code and build changes to take advantage of JSF2.1 features. A JSF2.1 implementation is required to use this version of the Tomahawk library.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.myfaces.shared_tomahawk.util;

/** A PriorityQueue maintains a partial ordering of its elements such that the
 * least element can always be found in constant time.  Put()'s and pop()'s
 * require log(size) time.
 *
 * 

NOTE: This class will pre-allocate a full array of * length maxSize+1 if instantiated via the * {@link #PriorityQueue(int,boolean)} constructor with * prepopulate set to true. * * @lucene.internal * @see org.apache.lucene.util.PriorityQueue */ public abstract class PriorityQueue { private int size; private final int maxSize; private final T[] heap; public PriorityQueue(int maxSize) { this(maxSize, true); } @SuppressWarnings("unchecked") public PriorityQueue(int maxSize, boolean prepopulate) { size = 0; int heapSize; if (0 == maxSize) { // We allocate 1 extra to avoid if statement in top() heapSize = 2; } else { if (maxSize == Integer.MAX_VALUE) { // Don't wrap heapSize to -1, in this case, which // causes a confusing NegativeArraySizeException. // Note that very likely this will simply then hit // an OOME, but at least that's more indicative to // caller that this values is too big. We don't +1 // in this case, but it's very unlikely in practice // one will actually insert this many objects into // the PQ: heapSize = Integer.MAX_VALUE; } else { // NOTE: we add +1 because all access to heap is // 1-based not 0-based. heap[0] is unused. heapSize = maxSize + 1; } } heap = (T[]) new Object[heapSize]; // T is unbounded type, so this unchecked cast works always this.maxSize = maxSize; if (prepopulate) { // If sentinel objects are supported, populate the queue with them T sentinel = getSentinelObject(); if (sentinel != null) { heap[1] = sentinel; for (int i = 2; i < heap.length; i++) { heap[i] = getSentinelObject(); } size = maxSize; } } } /** Determines the ordering of objects in this priority queue. Subclasses * must define this one method. * @return true iff parameter a is less than parameter b. */ protected abstract boolean lessThan(T a, T b); /** * This method can be overridden by extending classes to return a sentinel * object which will be used by the {@link PriorityQueue#PriorityQueue(int,boolean)} * constructor to fill the queue, so that the code which uses that queue can always * assume it's full and only change the top without attempting to insert any new * object.
* * Those sentinel values should always compare worse than any non-sentinel * value (i.e., {@link #lessThan} should always favor the * non-sentinel values).
* * By default, this method returns false, which means the queue will not be * filled with sentinel values. Otherwise, the value returned will be used to * pre-populate the queue. Adds sentinel values to the queue.
* * If this method is extended to return a non-null value, then the following * usage pattern is recommended: * *

     * // extends getSentinelObject() to return a non-null value.
     * PriorityQueue pq = new MyQueue(numHits);
     * // save the 'top' element, which is guaranteed to not be null.
     * MyObject pqTop = pq.top();
     * <...>
     * // now in order to add a new element, which is 'better' than top (after 
     * // you've verified it is better), it is as simple as:
     * pqTop.change().
     * pqTop = pq.updateTop();
     * 
* * NOTE: if this method returns a non-null value, it will be called by * the {@link PriorityQueue#PriorityQueue(int,boolean)} constructor * {@link #size()} times, relying on a new object to be returned and will not * check if it's null again. Therefore you should ensure any call to this * method creates a new instance and behaves consistently, e.g., it cannot * return null if it previously returned non-null. * * @return the sentinel object to use to pre-populate the queue, or null if * sentinel objects are not supported. */ protected T getSentinelObject() { return null; } /** * Adds an Object to a PriorityQueue in log(size) time. If one tries to add * more objects than maxSize from initialize an * {@link ArrayIndexOutOfBoundsException} is thrown. * * @return the new 'top' element in the queue. */ public final T add(T element) { size++; heap[size] = element; upHeap(); return heap[1]; } /** * Adds an Object to a PriorityQueue in log(size) time. * It returns the object (if any) that was * dropped off the heap because it was full. This can be * the given parameter (in case it is smaller than the * full heap's minimum, and couldn't be added), or another * object that was previously the smallest value in the * heap and now has been replaced by a larger one, or null * if the queue wasn't yet full with maxSize elements. */ public T insertWithOverflow(T element) { if (size < maxSize) { add(element); return null; } else if (size > 0 && !lessThan(element, heap[1])) { T ret = heap[1]; heap[1] = element; updateTop(); return ret; } else { return element; } } /** Returns the least element of the PriorityQueue in constant time. */ public final T top() { // We don't need to check size here: if maxSize is 0, // then heap is length 2 array with both entries null. // If size is 0 then heap[1] is already null. return heap[1]; } /** Removes and returns the least element of the PriorityQueue in log(size) time. */ public final T pop() { if (size > 0) { T result = heap[1]; // save first value heap[1] = heap[size]; // move last to first heap[size] = null; // permit GC of objects size--; downHeap(); // adjust heap return result; } else { return null; } } /** * Should be called when the Object at top changes values. Still log(n) worst * case, but it's at least twice as fast to * *
     * pq.top().change();
     * pq.updateTop();
     * 
* * instead of * *
     * o = pq.pop();
     * o.change();
     * pq.push(o);
     * 
* * @return the new 'top' element. */ public final T updateTop() { downHeap(); return heap[1]; } /** Returns the number of elements currently stored in the PriorityQueue. */ public final int size() { return size; } /** Removes all entries from the PriorityQueue. */ public final void clear() { for (int i = 0; i <= size; i++) { heap[i] = null; } size = 0; } private final void upHeap() { int i = size; T node = heap[i]; // save bottom node int j = i >>> 1; while (j > 0 && lessThan(node, heap[j])) { heap[i] = heap[j]; // shift parents down i = j; j = j >>> 1; } heap[i] = node; // install saved node } private final void downHeap() { int i = 1; T node = heap[i]; // save top node int j = i << 1; // find smaller child int k = j + 1; if (k <= size && lessThan(heap[k], heap[j])) { j = k; } while (j <= size && lessThan(heap[j], node)) { heap[i] = heap[j]; // shift up child i = j; j = i << 1; k = j + 1; if (k <= size && lessThan(heap[k], heap[j])) { j = k; } } heap[i] = node; // install saved node } /** This method returns the internal heap array as Object[]. * @lucene.internal */ protected final Object[] getHeapArray() { return (Object[]) heap; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy