All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hsqldb.lib.KMPSearchAlgorithm Maven / Gradle / Ivy

There is a newer version: 4.7.5
Show newest version
/* Copyright (c) 2001-2011, The HSQL Development Group
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of the HSQL Development Group nor the names of its
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG,
 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */


package org.hsqldb.lib;

import java.io.IOException;
import java.io.InputStream;
import java.io.Reader;

/**
 * Implements the Knuth�Morris�Pratt string search algorithm for searching
 * streams or arrays of octets or characters. 

* * This algorithm is a good choice for searching large, forward-only access * streams for repeated search using pre-processed small to medium sized * patterns.

* * This is because in addition to the facts that it: * *

    *
  • does not require pre-processing the searched data (only the pattern) *
  • scans strictly left-to-right *
  • does not need to perform back tracking *
  • does not need to employ reverse scan order *
  • does not need to perform effectively random access lookups against * the searched data or pattern *
* * it also has: * *
    *
  • a very simple, highly predictable behavior *
  • an O(n) complexity once the a search pattern is preprocessed *
  • an O(m) complexity for preprocessing search patterns *
  • a worst case performance characteristic of only 2n *
  • a typical performance characteristic that is deemed to be * 2-3 times better than the naive search algorithm employed by * {@link String.indexOf(java.lang.String,int)}. *
* * Note that the Boyer�Moore algorithm is generally considered to be the better * practical, all-round exact sub-string search algorithm, but due to its * reverse pattern scan order, performance considerations dictate that it * requires more space and that is somewhat more complex to implement * efficiently for searching forward-only access streams.

* * In particular, its higher average performance is biased toward larger * search patterns, due to its ability to skip ahead further and with fewer * tests under reverse pattern scan. But when searching forward-only access * streams, overall performance considerations require the use a circular buffer * of the same size as the search pattern to hold data from the searched stream * as it is being compared in reverse order to the search pattern. Hence, * Boyer�Moore requires at minimum twice the memory required by Knuth�Morris�Pratt * to search for the same pattern and that factor has the greatest impact * precisely on the same class of patterns (larger) for which it is most * outperforms Knuth�Morris�Pratt. * * @author Campbell Boucher-Burnet (boucherb@users dot sourceforge.net) * @version 2.1 * @since 2.1 * @see Knuth–Morris–Pratt algorithm */ public class KMPSearchAlgorithm { /** * Searches the given octet stream for the given octet pattern * returning the zero-based offset from the initial stream position * at which the first match is detected.

* * Note that the signature includes a slot for the table so that * searches for a pattern can be performed multiple times without * incurring the overhead of computing the table each time. * * @param inputStream in which to search * @param pattern for which to search * @param table computed from the pattern that optimizes the search. * If null, automatically computed. * @return zero-based offset of first match; -1 if no match found. * @throws IOException when an error occurs accessing the input stream. */ public static long search(final InputStream inputStream, final byte[] pattern, int[] table) throws IOException { if (inputStream == null || pattern == null || pattern.length == 0) { return -1; } // final int patternLength = pattern.length; // long streamIndex = -1; int currentByte; if (patternLength == 1) { final int byteToFind = pattern[0]; while (-1 != (currentByte = inputStream.read())) { streamIndex++; if (currentByte == byteToFind) { return streamIndex; } } return -1; } int patternIndex = 0; if (table == null) { table = computeTable(pattern); } while (-1 != (currentByte = inputStream.read())) { streamIndex++; if (currentByte == pattern[patternIndex]) { patternIndex++; } else if (patternIndex > 0) { patternIndex = table[patternIndex]; patternIndex++; } if (patternIndex == patternLength) { return streamIndex - (patternLength - 1); } } return -1; } /** * Searches the given character stream for the given character pattern * returning the zero-based offset from the initial stream position * at which the first match is detected.

* * Note that the signature includes a slot for the table so that * searches for a pattern can be performed multiple times without * incurring the overhead of computing the table each time. * * @param reader in which to search * @param pattern for which to search * @param table computed from the pattern that optimizes the search * If null, automatically computed. * @return zero-based offset of first match; -1 if no match found. * @throws IOException when an error occurs accessing the input stream. */ public static long search(final Reader reader, final char[] pattern, int[] table) throws IOException { if (reader == null || pattern == null || pattern.length == 0) { return -1; } // final int patternLength = pattern.length; // long streamIndex = -1; int currentCharacter; if (patternLength == 1) { final int characterToFind = pattern[0]; while (-1 != (currentCharacter = reader.read())) { streamIndex++; if (currentCharacter == characterToFind) { return streamIndex; } } return -1; } int patternIndex = 0; if (table == null) { table = computeTable(pattern); } while (-1 != (currentCharacter = reader.read())) { streamIndex++; if (currentCharacter == pattern[patternIndex]) { patternIndex++; } else if (patternIndex > 0) { patternIndex = table[patternIndex]; patternIndex++; } if (patternIndex == patternLength) { return streamIndex - (patternLength - 1); } } return -1; } /** * Searches the given octet string for the given octet pattern * returning the zero-based offset from given start position * at which the first match is detected.

* * Note that the signature includes a slot for the table so that * searches for a pattern can be performed multiple times without * incurring the overhead of computing the table each time. * * @param source array in which to search * @param pattern to be matched * @param table computed from the pattern that optimizes the search * If null, automatically computed. * @param start position in source at which to start the search * @return */ public static int search(final byte[] source, final byte[] pattern, int[] table, final int start) { if (source == null || pattern == null || pattern.length == 0) { return -1; } // final int sourceLength = source.length; final int patternLength = pattern.length; // int sourceIndex = start; if (patternLength == 1) { final int byteToFind = pattern[0]; for (; sourceIndex < sourceLength; sourceIndex++) { if (source[sourceIndex] == byteToFind) { return sourceIndex; } } return -1; } // int matchStart = start; int patternIndex = 0; // if (table == null) { table = computeTable(pattern); } // while ((sourceIndex < sourceLength) && (patternIndex < patternLength)) { if (source[sourceIndex] == pattern[patternIndex]) { patternIndex++; } else { final int tableVaue = table[patternIndex]; matchStart += (patternIndex - tableVaue); if (patternIndex > 0) { patternIndex = tableVaue; } patternIndex++; } sourceIndex = (matchStart + patternIndex); } if (patternIndex == patternLength) { return matchStart; } else { return -1; } } /** * Searches the given character array for the given character pattern * returning the zero-based offset from given start position * at which the first match is detected. * * @param source array in which to search * @param pattern to be matched * @param table computed from the pattern that optimizes the search * If null, automatically computed. * @param start position in source at which to start the search * @return */ public static int search(final char[] source, final char[] pattern, int[] table, final int start) { if (source == null || pattern == null || pattern.length == 0) { return -1; } final int sourceLength = source.length; final int patternLength = pattern.length; int sourceIndex = start; if (patternLength == 1) { final int characterToFind = pattern[0]; for (; sourceIndex < sourceLength; sourceIndex++) { if (source[sourceIndex] == characterToFind) { return sourceIndex; } } return -1; } // int matchStart = start; int patternIndex = 0; // if (table == null) { table = computeTable(pattern); } // while ((sourceIndex < sourceLength) && (patternIndex < patternLength)) { if (source[sourceIndex] == pattern[patternIndex]) { patternIndex++; } else { final int tableValue = table[patternIndex]; matchStart += (patternIndex - tableValue); if (patternIndex > 0) { patternIndex = tableValue; } patternIndex++; } sourceIndex = (matchStart + patternIndex); } if (patternIndex == patternLength) { return matchStart; } else { return -1; } } /** * Searches the given String object for the given character pattern * returning the zero-based offset from given start position * at which the first match is detected. * * @param source array to be searched * @param pattern to be matched * @param table computed from the pattern that optimizes the search * @param start position in source at which to start the search * @return */ public static int search(final String source, final String pattern, int[] table, final int start) { if (source == null || pattern == null || pattern.length() == 0) { return -1; } final int patternLength = pattern.length(); // if (patternLength == 1) { return source.indexOf(pattern, start); } // final int sourceLength = source.length(); // int matchStart = start; int sourceIndex = start; int patternIndex = 0; // if (table == null) { table = computeTable(pattern); } // while ((sourceIndex < sourceLength) && (patternIndex < patternLength)) { if (source.charAt(sourceIndex) == pattern.charAt(patternIndex)) { patternIndex++; } else { final int tableValue = table[patternIndex]; matchStart += (patternIndex - tableValue); if (patternIndex > 0) { patternIndex = tableValue; } patternIndex++; } sourceIndex = matchStart + patternIndex; } if (patternIndex == patternLength) { return matchStart; } else { return -1; } } /** * computes the table used to optimize octet pattern search * * @param pattern for which to compute the table. * @return the table computed from the octet pattern. */ public static int[] computeTable(final byte[] pattern) { if (pattern == null) { throw new IllegalArgumentException("Pattern must not be null."); } else if (pattern.length < 2) { throw new IllegalArgumentException("Pattern length must be > 1."); } // final int[] table = new int[pattern.length]; int i = 2; int j = 0; // table[0] = -1; table[1] = 0; // while (i < pattern.length) { if (pattern[i - 1] == pattern[j]) { table[i] = j + 1; j++; i++; } else if (j > 0) { j = table[j]; } else { table[i] = 0; i++; j = 0; } } // return table; } public static int[] computeTable(final char[] pattern) { if (pattern == null) { throw new IllegalArgumentException("Pattern must not be null."); } else if (pattern.length < 2) { throw new IllegalArgumentException("Pattern length must be > 1."); } int[] table = new int[pattern.length]; int i = 2; int j = 0; table[0] = -1; table[1] = 0; while (i < pattern.length) { if (pattern[i - 1] == pattern[j]) { table[i] = j + 1; j++; i++; } else if (j > 0) { j = table[j]; } else { table[i] = 0; i++; j = 0; } } return table; } public static int[] computeTable(final String pattern) { if (pattern == null) { throw new IllegalArgumentException("Pattern must not be null."); } else if (pattern.length() < 2) { throw new IllegalArgumentException("Pattern length must be > 1."); } final int patternLength = pattern.length(); // int[] table = new int[patternLength]; int i = 2; int j = 0; table[0] = -1; table[1] = 0; while (i < patternLength) { if (pattern.charAt(i - 1) == pattern.charAt(j)) { table[i] = j + 1; j++; i++; } else if (j > 0) { j = table[j]; } else { table[i] = 0; i++; j = 0; } } return table; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy