All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.openejb.math.stat.descriptive.DescriptiveStatistics Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.openejb.math.stat.descriptive;

import org.apache.openejb.math.MathRuntimeException;
import org.apache.openejb.math.stat.descriptive.moment.GeometricMean;
import org.apache.openejb.math.stat.descriptive.moment.Kurtosis;
import org.apache.openejb.math.stat.descriptive.moment.Mean;
import org.apache.openejb.math.stat.descriptive.moment.Skewness;
import org.apache.openejb.math.stat.descriptive.moment.Variance;
import org.apache.openejb.math.stat.descriptive.rank.Max;
import org.apache.openejb.math.stat.descriptive.rank.Min;
import org.apache.openejb.math.stat.descriptive.rank.Percentile;
import org.apache.openejb.math.stat.descriptive.summary.Sum;
import org.apache.openejb.math.stat.descriptive.summary.SumOfSquares;
import org.apache.openejb.math.util.ResizableDoubleArray;

import java.io.Serializable;
import java.lang.reflect.InvocationTargetException;
import java.util.Arrays;


/**
 * Maintains a dataset of values of a single variable and computes descriptive
 * statistics based on stored data. The {@link #getWindowSize() windowSize}
 * property sets a limit on the number of values that can be stored in the
 * dataset.  The default value, INFINITE_WINDOW, puts no limit on the size of
 * the dataset.  This value should be used with caution, as the backing store
 * will grow without bound in this case.  For very large datasets,
 * {@link org.apache.commons.math.stat.descriptive.SummaryStatistics}, which does not store the dataset, should be used
 * instead of this class. If windowSize is not INFINITE_WINDOW and
 * more values are added than can be stored in the dataset, new values are
 * added in a "rolling" manner, with new values replacing the "oldest" values
 * in the dataset.
 * 

*

Note: this class is not threadsafe. Use * {@link SynchronizedDescriptiveStatistics} if concurrent access from multiple * threads is required.

* * @version $Revision: 885278 $ $Date: 2009-11-29 13:47:51 -0800 (Sun, 29 Nov 2009) $ */ public class DescriptiveStatistics implements StatisticalSummary, Serializable { /** * Represents an infinite window size. When the {@link #getWindowSize()} * returns this value, there is no limit to the number of data values * that can be stored in the dataset. */ public static final int INFINITE_WINDOW = -1; /** * Serialization UID */ private static final long serialVersionUID = 1233067267405273064L; /** * Name of the setQuantile method. */ private static final String SET_QUANTILE_METHOD_NAME = "setQuantile"; /** * Message for unsupported setQuantile. */ private static final String UNSUPPORTED_METHOD_MESSAGE = "percentile implementation {0} does not support {1}"; /** * Message for illegal accesson setquantile. */ private static final String ILLEGAL_ACCESS_MESSAGE = "cannot access {0} method in percentile implementation {1}"; /** * hold the window size * */ protected int windowSize = INFINITE_WINDOW; /** * Stored data values */ protected ResizableDoubleArray eDA = new ResizableDoubleArray(); /** * Mean statistic implementation - can be reset by setter. */ private UnivariateStatistic meanImpl = new Mean(); /** * Geometric mean statistic implementation - can be reset by setter. */ private UnivariateStatistic geometricMeanImpl = new GeometricMean(); /** * Kurtosis statistic implementation - can be reset by setter. */ private UnivariateStatistic kurtosisImpl = new Kurtosis(); /** * Maximum statistic implementation - can be reset by setter. */ private UnivariateStatistic maxImpl = new Max(); /** * Minimum statistic implementation - can be reset by setter. */ private UnivariateStatistic minImpl = new Min(); /** * Percentile statistic implementation - can be reset by setter. */ private UnivariateStatistic percentileImpl = new Percentile(); /** * Skewness statistic implementation - can be reset by setter. */ private UnivariateStatistic skewnessImpl = new Skewness(); /** * Variance statistic implementation - can be reset by setter. */ private UnivariateStatistic varianceImpl = new Variance(); /** * Sum of squares statistic implementation - can be reset by setter. */ private UnivariateStatistic sumsqImpl = new SumOfSquares(); /** * Sum statistic implementation - can be reset by setter. */ private UnivariateStatistic sumImpl = new Sum(); /** * Construct a DescriptiveStatistics instance with an infinite window */ public DescriptiveStatistics() { } /** * Construct a DescriptiveStatistics instance with the specified window * * @param window the window size. */ public DescriptiveStatistics(final int window) { setWindowSize(window); } /** * Copy constructor. Construct a new DescriptiveStatistics instance that * is a copy of original. * * @param original DescriptiveStatistics instance to copy */ public DescriptiveStatistics(final DescriptiveStatistics original) { copy(original, this); } /** * Adds the value to the dataset. If the dataset is at the maximum size * (i.e., the number of stored elements equals the currently configured * windowSize), the first (oldest) element in the dataset is discarded * to make room for the new value. * * @param v the value to be added */ public void addValue(final double v) { if (windowSize != INFINITE_WINDOW) { if (getN() == windowSize) { eDA.addElementRolling(v); } else if (getN() < windowSize) { eDA.addElement(v); } } else { eDA.addElement(v); } } /** * Removes the most recent value from the dataset. */ public void removeMostRecentValue() { eDA.discardMostRecentElements(1); } /** * Replaces the most recently stored value with the given value. * There must be at least one element stored to call this method. * * @param v the value to replace the most recent stored value * @return replaced value */ public double replaceMostRecentValue(final double v) { return eDA.substituteMostRecentElement(v); } /** * Returns the * arithmetic mean of the available values * * @return The mean or Double.NaN if no values have been added. */ public double getMean() { return apply(meanImpl); } /** * Returns the * geometric mean of the available values * * @return The geometricMean, Double.NaN if no values have been added, * or if the product of the available values is less than or equal to 0. */ public double getGeometricMean() { return apply(geometricMeanImpl); } /** * Returns the variance of the available values. * * @return The variance, Double.NaN if no values have been added * or 0.0 for a single value set. */ public double getVariance() { return apply(varianceImpl); } /** * Returns the standard deviation of the available values. * * @return The standard deviation, Double.NaN if no values have been added * or 0.0 for a single value set. */ public double getStandardDeviation() { double stdDev = Double.NaN; if (getN() > 0) { if (getN() > 1) { stdDev = Math.sqrt(getVariance()); } else { stdDev = 0.0; } } return stdDev; } /** * Returns the skewness of the available values. Skewness is a * measure of the asymmetry of a given distribution. * * @return The skewness, Double.NaN if no values have been added * or 0.0 for a value set <=2. */ public double getSkewness() { return apply(skewnessImpl); } /** * Returns the Kurtosis of the available values. Kurtosis is a * measure of the "peakedness" of a distribution * * @return The kurtosis, Double.NaN if no values have been added, or 0.0 * for a value set <=3. */ public double getKurtosis() { return apply(kurtosisImpl); } /** * Returns the maximum of the available values * * @return The max or Double.NaN if no values have been added. */ public double getMax() { return apply(maxImpl); } /** * Returns the minimum of the available values * * @return The min or Double.NaN if no values have been added. */ public double getMin() { return apply(minImpl); } /** * Returns the number of available values * * @return The number of available values */ public long getN() { return eDA.getNumElements(); } /** * Returns the sum of the values that have been added to Univariate. * * @return The sum or Double.NaN if no values have been added */ public double getSum() { return apply(sumImpl); } /** * Returns the sum of the squares of the available values. * * @return The sum of the squares or Double.NaN if no * values have been added. */ public double getSumsq() { return apply(sumsqImpl); } /** * Resets all statistics and storage */ public void clear() { eDA.clear(); } /** * Returns the maximum number of values that can be stored in the * dataset, or INFINITE_WINDOW (-1) if there is no limit. * * @return The current window size or -1 if its Infinite. */ public int getWindowSize() { return windowSize; } /** * WindowSize controls the number of values which contribute * to the reported statistics. For example, if * windowSize is set to 3 and the values {1,2,3,4,5} * have been added in that order * then the available values are {3,4,5} and all * reported statistics will be based on these values * * @param windowSize sets the size of the window. */ public void setWindowSize(final int windowSize) { if (windowSize < 1) { if (windowSize != INFINITE_WINDOW) { throw MathRuntimeException.createIllegalArgumentException( "window size must be positive ({0})", windowSize); } } this.windowSize = windowSize; // We need to check to see if we need to discard elements // from the front of the array. If the windowSize is less than // the current number of elements. if (windowSize != INFINITE_WINDOW && windowSize < eDA.getNumElements()) { eDA.discardFrontElements(eDA.getNumElements() - windowSize); } } /** * Returns the current set of values in an array of double primitives. * The order of addition is preserved. The returned array is a fresh * copy of the underlying data -- i.e., it is not a reference to the * stored data. * * @return returns the current set of numbers in the order in which they * were added to this set */ public double[] getValues() { return eDA.getElements(); } /** * Returns the current set of values in an array of double primitives, * sorted in ascending order. The returned array is a fresh * copy of the underlying data -- i.e., it is not a reference to the * stored data. * * @return returns the current set of * numbers sorted in ascending order */ public double[] getSortedValues() { final double[] sort = getValues(); Arrays.sort(sort); return sort; } /** * Returns the element at the specified index * * @param index The Index of the element * @return return the element at the specified index */ public double getElement(final int index) { return eDA.getElement(index); } /** * Returns an estimate for the pth percentile of the stored values. *

* The implementation provided here follows the first estimation procedure presented * here. *

* Preconditions:

    *
  • 0 < p ≤ 100 (otherwise an * IllegalArgumentException is thrown)
  • *
  • at least one value must be stored (returns Double.NaN * otherwise)
  • *

* * @param p the requested percentile (scaled from 0 - 100) * @return An estimate for the pth percentile of the stored data * @throws IllegalStateException if percentile implementation has been * overridden and the supplied implementation does not support setQuantile * values */ public double getPercentile(final double p) { if (percentileImpl instanceof Percentile) { ((Percentile) percentileImpl).setQuantile(p); } else { try { percentileImpl.getClass().getMethod(SET_QUANTILE_METHOD_NAME, new Class[]{Double.TYPE}).invoke(percentileImpl, new Object[]{Double.valueOf(p)}); } catch (final NoSuchMethodException e1) { // Setter guard should prevent throw MathRuntimeException.createIllegalArgumentException( UNSUPPORTED_METHOD_MESSAGE, percentileImpl.getClass().getName(), SET_QUANTILE_METHOD_NAME); } catch (final IllegalAccessException e2) { throw MathRuntimeException.createIllegalArgumentException( ILLEGAL_ACCESS_MESSAGE, SET_QUANTILE_METHOD_NAME, percentileImpl.getClass().getName()); } catch (final InvocationTargetException e3) { throw MathRuntimeException.createIllegalArgumentException(e3.getCause()); } } return apply(percentileImpl); } /** * Generates a text report displaying univariate statistics from values * that have been added. Each statistic is displayed on a separate * line. * * @return String with line feeds displaying statistics */ @Override public String toString() { final StringBuilder outBuffer = new StringBuilder(); final String endl = "\n"; outBuffer.append("DescriptiveStatistics:").append(endl); outBuffer.append("n: ").append(getN()).append(endl); outBuffer.append("min: ").append(getMin()).append(endl); outBuffer.append("max: ").append(getMax()).append(endl); outBuffer.append("mean: ").append(getMean()).append(endl); outBuffer.append("std dev: ").append(getStandardDeviation()) .append(endl); outBuffer.append("median: ").append(getPercentile(50)).append(endl); outBuffer.append("skewness: ").append(getSkewness()).append(endl); outBuffer.append("kurtosis: ").append(getKurtosis()).append(endl); return outBuffer.toString(); } /** * Apply the given statistic to the data associated with this set of statistics. * * @param stat the statistic to apply * @return the computed value of the statistic. */ public double apply(final UnivariateStatistic stat) { return stat.evaluate(eDA.getInternalValues(), eDA.start(), eDA.getNumElements()); } // Implementation getters and setter /** * Returns the currently configured mean implementation. * * @return the UnivariateStatistic implementing the mean * @since 1.2 */ public synchronized UnivariateStatistic getMeanImpl() { return meanImpl; } /** *

Sets the implementation for the mean.

* * @param meanImpl the UnivariateStatistic instance to use * for computing the mean * @since 1.2 */ public synchronized void setMeanImpl(final UnivariateStatistic meanImpl) { this.meanImpl = meanImpl; } /** * Returns the currently configured geometric mean implementation. * * @return the UnivariateStatistic implementing the geometric mean * @since 1.2 */ public synchronized UnivariateStatistic getGeometricMeanImpl() { return geometricMeanImpl; } /** *

Sets the implementation for the gemoetric mean.

* * @param geometricMeanImpl the UnivariateStatistic instance to use * for computing the geometric mean * @since 1.2 */ public synchronized void setGeometricMeanImpl( final UnivariateStatistic geometricMeanImpl) { this.geometricMeanImpl = geometricMeanImpl; } /** * Returns the currently configured kurtosis implementation. * * @return the UnivariateStatistic implementing the kurtosis * @since 1.2 */ public synchronized UnivariateStatistic getKurtosisImpl() { return kurtosisImpl; } /** *

Sets the implementation for the kurtosis.

* * @param kurtosisImpl the UnivariateStatistic instance to use * for computing the kurtosis * @since 1.2 */ public synchronized void setKurtosisImpl(final UnivariateStatistic kurtosisImpl) { this.kurtosisImpl = kurtosisImpl; } /** * Returns the currently configured maximum implementation. * * @return the UnivariateStatistic implementing the maximum * @since 1.2 */ public synchronized UnivariateStatistic getMaxImpl() { return maxImpl; } /** *

Sets the implementation for the maximum.

* * @param maxImpl the UnivariateStatistic instance to use * for computing the maximum * @since 1.2 */ public synchronized void setMaxImpl(final UnivariateStatistic maxImpl) { this.maxImpl = maxImpl; } /** * Returns the currently configured minimum implementation. * * @return the UnivariateStatistic implementing the minimum * @since 1.2 */ public synchronized UnivariateStatistic getMinImpl() { return minImpl; } /** *

Sets the implementation for the minimum.

* * @param minImpl the UnivariateStatistic instance to use * for computing the minimum * @since 1.2 */ public synchronized void setMinImpl(final UnivariateStatistic minImpl) { this.minImpl = minImpl; } /** * Returns the currently configured percentile implementation. * * @return the UnivariateStatistic implementing the percentile * @since 1.2 */ public synchronized UnivariateStatistic getPercentileImpl() { return percentileImpl; } /** * Sets the implementation to be used by {@link #getPercentile(double)}. * The supplied UnivariateStatistic must provide a * setQuantile(double) method; otherwise * IllegalArgumentException is thrown. * * @param percentileImpl the percentileImpl to set * @throws IllegalArgumentException if the supplied implementation does not * provide a setQuantile method * @since 1.2 */ public synchronized void setPercentileImpl( final UnivariateStatistic percentileImpl) { try { percentileImpl.getClass().getMethod(SET_QUANTILE_METHOD_NAME, new Class[]{Double.TYPE}).invoke(percentileImpl, new Object[]{Double.valueOf(50.0d)}); } catch (final NoSuchMethodException e1) { throw MathRuntimeException.createIllegalArgumentException( "percentile implementation {0} does not support setQuantile", percentileImpl.getClass().getName()); } catch (final IllegalAccessException e2) { throw MathRuntimeException.createIllegalArgumentException( ILLEGAL_ACCESS_MESSAGE, SET_QUANTILE_METHOD_NAME, percentileImpl.getClass().getName()); } catch (final InvocationTargetException e3) { throw MathRuntimeException.createIllegalArgumentException(e3.getCause()); } this.percentileImpl = percentileImpl; } /** * Returns the currently configured skewness implementation. * * @return the UnivariateStatistic implementing the skewness * @since 1.2 */ public synchronized UnivariateStatistic getSkewnessImpl() { return skewnessImpl; } /** *

Sets the implementation for the skewness.

* * @param skewnessImpl the UnivariateStatistic instance to use * for computing the skewness * @since 1.2 */ public synchronized void setSkewnessImpl( final UnivariateStatistic skewnessImpl) { this.skewnessImpl = skewnessImpl; } /** * Returns the currently configured variance implementation. * * @return the UnivariateStatistic implementing the variance * @since 1.2 */ public synchronized UnivariateStatistic getVarianceImpl() { return varianceImpl; } /** *

Sets the implementation for the variance.

* * @param varianceImpl the UnivariateStatistic instance to use * for computing the variance * @since 1.2 */ public synchronized void setVarianceImpl( final UnivariateStatistic varianceImpl) { this.varianceImpl = varianceImpl; } /** * Returns the currently configured sum of squares implementation. * * @return the UnivariateStatistic implementing the sum of squares * @since 1.2 */ public synchronized UnivariateStatistic getSumsqImpl() { return sumsqImpl; } /** *

Sets the implementation for the sum of squares.

* * @param sumsqImpl the UnivariateStatistic instance to use * for computing the sum of squares * @since 1.2 */ public synchronized void setSumsqImpl(final UnivariateStatistic sumsqImpl) { this.sumsqImpl = sumsqImpl; } /** * Returns the currently configured sum implementation. * * @return the UnivariateStatistic implementing the sum * @since 1.2 */ public synchronized UnivariateStatistic getSumImpl() { return sumImpl; } /** *

Sets the implementation for the sum.

* * @param sumImpl the UnivariateStatistic instance to use * for computing the sum * @since 1.2 */ public synchronized void setSumImpl(final UnivariateStatistic sumImpl) { this.sumImpl = sumImpl; } /** * Returns a copy of this DescriptiveStatistics instance with the same internal state. * * @return a copy of this */ public DescriptiveStatistics copy() { final DescriptiveStatistics result = new DescriptiveStatistics(); copy(this, result); return result; } /** * Copies source to dest. *

Neither source nor dest can be null.

* * @param source DescriptiveStatistics to copy * @param dest DescriptiveStatistics to copy to * @throws NullPointerException if either source or dest is null */ public static void copy(final DescriptiveStatistics source, final DescriptiveStatistics dest) { // Copy data and window size dest.eDA = source.eDA.copy(); dest.windowSize = source.windowSize; // Copy implementations dest.maxImpl = source.maxImpl.copy(); dest.meanImpl = source.meanImpl.copy(); dest.minImpl = source.minImpl.copy(); dest.sumImpl = source.sumImpl.copy(); dest.varianceImpl = source.varianceImpl.copy(); dest.sumsqImpl = source.sumsqImpl.copy(); dest.geometricMeanImpl = source.geometricMeanImpl.copy(); dest.kurtosisImpl = source.kurtosisImpl; dest.skewnessImpl = source.skewnessImpl; dest.percentileImpl = source.percentileImpl; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy