All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.openejb.math.util.MathUtils Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.openejb.math.util;

import org.apache.openejb.math.MathRuntimeException;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Arrays;

/**
 * Some useful additions to the built-in functions in {@link Math}.
 *
 * @version $Revision: 927249 $ $Date: 2010-03-24 18:06:51 -0700 (Wed, 24 Mar 2010) $
 */
public final class MathUtils {

    /**
     * Smallest positive number such that 1 - EPSILON is not numerically equal to 1.
     */
    public static final double EPSILON = 0x1.0p-53;

    /**
     * Safe minimum, such that 1 / SAFE_MIN does not overflow.
     * 

In IEEE 754 arithmetic, this is also the smallest normalized * number 2-1022.

*/ public static final double SAFE_MIN = 0x1.0p-1022; /** * 2 π. * * @since 2.1 */ public static final double TWO_PI = 2 * Math.PI; /** * -1.0 cast as a byte. */ private static final byte NB = (byte) -1; /** * -1.0 cast as a short. */ private static final short NS = (short) -1; /** * 1.0 cast as a byte. */ private static final byte PB = (byte) 1; /** * 1.0 cast as a short. */ private static final short PS = (short) 1; /** * 0.0 cast as a byte. */ private static final byte ZB = (byte) 0; /** * 0.0 cast as a short. */ private static final short ZS = (short) 0; /** * Gap between NaN and regular numbers. */ private static final int NAN_GAP = 4 * 1024 * 1024; /** * Offset to order signed double numbers lexicographically. */ private static final long SGN_MASK = 0x8000000000000000L; /** * All long-representable factorials */ private static final long[] FACTORIALS = new long[]{ 1l, 1l, 2l, 6l, 24l, 120l, 720l, 5040l, 40320l, 362880l, 3628800l, 39916800l, 479001600l, 6227020800l, 87178291200l, 1307674368000l, 20922789888000l, 355687428096000l, 6402373705728000l, 121645100408832000l, 2432902008176640000l}; /** * Private Constructor */ private MathUtils() { super(); } /** * Add two integers, checking for overflow. * * @param x an addend * @param y an addend * @return the sum x+y * @throws ArithmeticException if the result can not be represented as an * int * @since 1.1 */ public static int addAndCheck(final int x, final int y) { final long s = (long) x + (long) y; if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: add"); } return (int) s; } /** * Add two long integers, checking for overflow. * * @param a an addend * @param b an addend * @return the sum a+b * @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ public static long addAndCheck(final long a, final long b) { return addAndCheck(a, b, "overflow: add"); } /** * Add two long integers, checking for overflow. * * @param a an addend * @param b an addend * @param msg the message to use for any thrown exception. * @return the sum a+b * @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ private static long addAndCheck(final long a, final long b, final String msg) { final long ret; if (a > b) { // use symmetry to reduce boundary cases ret = addAndCheck(b, a, msg); } else { // assert a <= b if (a < 0) { if (b < 0) { // check for negative overflow if (Long.MIN_VALUE - b <= a) { ret = a + b; } else { throw new ArithmeticException(msg); } } else { // opposite sign addition is always safe ret = a + b; } } else { // assert a >= 0 // assert b >= 0 // check for positive overflow if (a <= Long.MAX_VALUE - b) { ret = a + b; } else { throw new ArithmeticException(msg); } } } return ret; } /** * Returns an exact representation of the Binomial * Coefficient, "n choose k", the number of * k-element subsets that can be selected from an * n-element set. *

* Preconditions: *

    *
  • 0 <= k <= n (otherwise * IllegalArgumentException is thrown)
  • *
  • The result is small enough to fit into a long. The * largest value of n for which all coefficients are * < Long.MAX_VALUE is 66. If the computed value exceeds * Long.MAX_VALUE an ArithMeticException is * thrown.
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return n choose k * @throws IllegalArgumentException if preconditions are not met. * @throws ArithmeticException if the result is too large to be represented * by a long integer. */ public static long binomialCoefficient(final int n, final int k) { checkBinomial(n, k); if (n == k || k == 0) { return 1; } if (k == 1 || k == n - 1) { return n; } // Use symmetry for large k if (k > n / 2) { return binomialCoefficient(n, n - k); } // We use the formula // (n choose k) = n! / (n-k)! / k! // (n choose k) == ((n-k+1)*...*n) / (1*...*k) // which could be written // (n choose k) == (n-1 choose k-1) * n / k long result = 1; if (n <= 61) { // For n <= 61, the naive implementation cannot overflow. int i = n - k + 1; for (int j = 1; j <= k; j++) { result = result * i / j; i++; } } else if (n <= 66) { // For n > 61 but n <= 66, the result cannot overflow, // but we must take care not to overflow intermediate values. int i = n - k + 1; for (int j = 1; j <= k; j++) { // We know that (result * i) is divisible by j, // but (result * i) may overflow, so we split j: // Filter out the gcd, d, so j/d and i/d are integer. // result is divisible by (j/d) because (j/d) // is relative prime to (i/d) and is a divisor of // result * (i/d). final long d = gcd(i, j); result = result / (j / d) * i / d; i++; } } else { // For n > 66, a result overflow might occur, so we check // the multiplication, taking care to not overflow // unnecessary. int i = n - k + 1; for (int j = 1; j <= k; j++) { final long d = gcd(i, j); result = mulAndCheck(result / (j / d), i / d); i++; } } return result; } /** * Returns a double representation of the Binomial * Coefficient, "n choose k", the number of * k-element subsets that can be selected from an * n-element set. *

* Preconditions: *

    *
  • 0 <= k <= n (otherwise * IllegalArgumentException is thrown)
  • *
  • The result is small enough to fit into a double. The * largest value of n for which all coefficients are < * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE, * Double.POSITIVE_INFINITY is returned
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return n choose k * @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientDouble(final int n, final int k) { checkBinomial(n, k); if (n == k || k == 0) { return 1d; } if (k == 1 || k == n - 1) { return n; } if (k > n / 2) { return binomialCoefficientDouble(n, n - k); } if (n < 67) { return binomialCoefficient(n, k); } double result = 1d; for (int i = 1; i <= k; i++) { result *= (double) (n - k + i) / (double) i; } return Math.floor(result + 0.5); } /** * Returns the natural log of the Binomial * Coefficient, "n choose k", the number of * k-element subsets that can be selected from an * n-element set. *

* Preconditions: *

    *
  • 0 <= k <= n (otherwise * IllegalArgumentException is thrown)
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return n choose k * @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientLog(final int n, final int k) { checkBinomial(n, k); if (n == k || k == 0) { return 0; } if (k == 1 || k == n - 1) { return Math.log(n); } /* * For values small enough to do exact integer computation, * return the log of the exact value */ if (n < 67) { return Math.log(binomialCoefficient(n, k)); } /* * Return the log of binomialCoefficientDouble for values that will not * overflow binomialCoefficientDouble */ if (n < 1030) { return Math.log(binomialCoefficientDouble(n, k)); } if (k > n / 2) { return binomialCoefficientLog(n, n - k); } /* * Sum logs for values that could overflow */ double logSum = 0; // n!/(n-k)! for (int i = n - k + 1; i <= n; i++) { logSum += Math.log(i); } // divide by k! for (int i = 2; i <= k; i++) { logSum -= Math.log(i); } return logSum; } /** * Check binomial preconditions. * * @param n the size of the set * @param k the size of the subsets to be counted * @throws IllegalArgumentException if preconditions are not met. */ private static void checkBinomial(final int n, final int k) throws IllegalArgumentException { if (n < k) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= k for binomial coefficient (n,k), got n = {0}, k = {1}", n, k); } if (n < 0) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= 0 for binomial coefficient (n,k), got n = {0}", n); } } /** * Compares two numbers given some amount of allowed error. * * @param x the first number * @param y the second number * @param eps the amount of error to allow when checking for equality * @return
  • 0 if {@link #equals(double, double, double) equals(x, y, eps)}
  • *
  • < 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x < y
  • *
  • > 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x > y
*/ public static int compareTo(final double x, final double y, final double eps) { if (equals(x, y, eps)) { return 0; } else if (x < y) { return -1; } return 1; } /** * Returns the * hyperbolic cosine of x. * * @param x double value for which to find the hyperbolic cosine * @return hyperbolic cosine of x */ public static double cosh(final double x) { return (Math.exp(x) + Math.exp(-x)) / 2.0; } /** * Returns true iff both arguments are NaN or neither is NaN and they are * equal * * @param x first value * @param y second value * @return true if the values are equal or both are NaN */ public static boolean equals(final double x, final double y) { return Double.isNaN(x) && Double.isNaN(y) || x == y; } /** * Returns true iff both arguments are equal or within the range of allowed * error (inclusive). *

* Two NaNs are considered equals, as are two infinities with same sign. *

* * @param x first value * @param y second value * @param eps the amount of absolute error to allow * @return true if the values are equal or within range of each other */ public static boolean equals(final double x, final double y, final double eps) { return equals(x, y) || Math.abs(y - x) <= eps; } /** * Returns true iff both arguments are equal or within the range of allowed * error (inclusive). * Adapted from * Bruce Dawson * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point * values between {@code x} and {@code y}. * @return {@code true} if there are less than {@code maxUlps} floating * point values between {@code x} and {@code y} */ public static boolean equals(final double x, final double y, final int maxUlps) { // Check that "maxUlps" is non-negative and small enough so that the // default NAN won't compare as equal to anything. assert maxUlps > 0 && maxUlps < NAN_GAP; long xInt = Double.doubleToLongBits(x); long yInt = Double.doubleToLongBits(y); // Make lexicographically ordered as a two's-complement integer. if (xInt < 0) { xInt = SGN_MASK - xInt; } if (yInt < 0) { yInt = SGN_MASK - yInt; } return Math.abs(xInt - yInt) <= maxUlps; } /** * Returns true iff both arguments are null or have same dimensions * and all their elements are {@link #equals(double, double) equals} * * @param x first array * @param y second array * @return true if the values are both null or have same dimension * and equal elements * @since 1.2 */ public static boolean equals(final double[] x, final double[] y) { if (x == null || y == null) { return !(x == null ^ y == null); } if (x.length != y.length) { return false; } for (int i = 0; i < x.length; ++i) { if (!equals(x[i], y[i])) { return false; } } return true; } /** * Returns n!. Shorthand for n Factorial, the * product of the numbers 1,...,n. *

* Preconditions: *

    *
  • n >= 0 (otherwise * IllegalArgumentException is thrown)
  • *
  • The result is small enough to fit into a long. The * largest value of n for which n! < * Long.MAX_VALUE is 20. If the computed value exceeds Long.MAX_VALUE * an ArithMeticException is thrown.
  • *
*

* * @param n argument * @return n! * @throws ArithmeticException if the result is too large to be represented * by a long integer. * @throws IllegalArgumentException if n < 0 */ public static long factorial(final int n) { if (n < 0) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= 0 for n!, got n = {0}", n); } if (n > 20) { throw new ArithmeticException( "factorial value is too large to fit in a long"); } return FACTORIALS[n]; } /** * Returns n!. Shorthand for n Factorial, the * product of the numbers 1,...,n as a double. *

* Preconditions: *

    *
  • n >= 0 (otherwise * IllegalArgumentException is thrown)
  • *
  • The result is small enough to fit into a double. The * largest value of n for which n! < * Double.MAX_VALUE is 170. If the computed value exceeds * Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned
  • *
*

* * @param n argument * @return n! * @throws IllegalArgumentException if n < 0 */ public static double factorialDouble(final int n) { if (n < 0) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= 0 for n!, got n = {0}", n); } if (n < 21) { return factorial(n); } return Math.floor(Math.exp(factorialLog(n)) + 0.5); } /** * Returns the natural logarithm of n!. *

* Preconditions: *

    *
  • n >= 0 (otherwise * IllegalArgumentException is thrown)
  • *

* * @param n argument * @return n! * @throws IllegalArgumentException if preconditions are not met. */ public static double factorialLog(final int n) { if (n < 0) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= 0 for n!, got n = {0}", n); } if (n < 21) { return Math.log(factorial(n)); } double logSum = 0; for (int i = 2; i <= n; i++) { logSum += Math.log(i); } return logSum; } /** *

* Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). *

* Special cases: *
    *
  • The invocations * gcd(Integer.MIN_VALUE, Integer.MIN_VALUE), * gcd(Integer.MIN_VALUE, 0) and * gcd(0, Integer.MIN_VALUE) throw an * ArithmeticException, because the result would be 2^31, which * is too large for an int value.
  • *
  • The result of gcd(x, x), gcd(0, x) and * gcd(x, 0) is the absolute value of x, except * for the special cases above. *
  • The invocation gcd(0, 0) is the only one which returns * 0.
  • *
* * @param p any number * @param q any number * @return the greatest common divisor, never negative * @throws ArithmeticException if the result cannot be represented as a * nonnegative int value * @since 1.1 */ public static int gcd(final int p, final int q) { int u = p; int v = q; if (u == 0 || v == 0) { if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) { throw MathRuntimeException.createArithmeticException( "overflow: gcd({0}, {1}) is 2^31", p, q); } return Math.abs(u) + Math.abs(v); } // keep u and v negative, as negative integers range down to // -2^31, while positive numbers can only be as large as 2^31-1 // (i.e. we can't necessarily negate a negative number without // overflow) /* assert u!=0 && v!=0; */ if (u > 0) { u = -u; } // make u negative if (v > 0) { v = -v; } // make v negative // B1. [Find power of 2] int k = 0; while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are // both even... u /= 2; v /= 2; k++; // cast out twos. } if (k == 31) { throw MathRuntimeException.createArithmeticException( "overflow: gcd({0}, {1}) is 2^31", p, q); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t & 1) == 0) { // while t is even.. t /= 2; // cast out twos } // B5 [reset max(u,v)] if (t > 0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u) / 2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t != 0); return -u * (1 << k); // gcd is u*2^k } /** *

* Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). *

* Special cases: *
    *
  • The invocations * gcd(Long.MIN_VALUE, Long.MIN_VALUE), * gcd(Long.MIN_VALUE, 0L) and * gcd(0L, Long.MIN_VALUE) throw an * ArithmeticException, because the result would be 2^63, which * is too large for a long value.
  • *
  • The result of gcd(x, x), gcd(0L, x) and * gcd(x, 0L) is the absolute value of x, except * for the special cases above. *
  • The invocation gcd(0L, 0L) is the only one which returns * 0L.
  • *
* * @param p any number * @param q any number * @return the greatest common divisor, never negative * @throws ArithmeticException if the result cannot be represented as a nonnegative long * value * @since 2.1 */ public static long gcd(final long p, final long q) { long u = p; long v = q; if (u == 0 || v == 0) { if (u == Long.MIN_VALUE || v == Long.MIN_VALUE) { throw MathRuntimeException.createArithmeticException( "overflow: gcd({0}, {1}) is 2^63", p, q); } return Math.abs(u) + Math.abs(v); } // keep u and v negative, as negative integers range down to // -2^63, while positive numbers can only be as large as 2^63-1 // (i.e. we can't necessarily negate a negative number without // overflow) /* assert u!=0 && v!=0; */ if (u > 0) { u = -u; } // make u negative if (v > 0) { v = -v; } // make v negative // B1. [Find power of 2] int k = 0; while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are // both even... u /= 2; v /= 2; k++; // cast out twos. } if (k == 63) { throw MathRuntimeException.createArithmeticException( "overflow: gcd({0}, {1}) is 2^63", p, q); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. long t = (u & 1) == 1 ? v : -(u / 2)/* B3 */; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t & 1) == 0) { // while t is even.. t /= 2; // cast out twos } // B5 [reset max(u,v)] if (t > 0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u) / 2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t != 0); return -u * (1L << k); // gcd is u*2^k } /** * Returns an integer hash code representing the given double value. * * @param value the value to be hashed * @return the hash code */ public static int hash(final double value) { return new Double(value).hashCode(); } /** * Returns an integer hash code representing the given double array. * * @param value the value to be hashed (may be null) * @return the hash code * @since 1.2 */ public static int hash(final double[] value) { return Arrays.hashCode(value); } /** * For a byte value x, this method returns (byte)(+1) if x >= 0 and * (byte)(-1) if x < 0. * * @param x the value, a byte * @return (byte)(+1) or (byte)(-1), depending on the sign of x */ public static byte indicator(final byte x) { return x >= ZB ? PB : NB; } /** * For a double precision value x, this method returns +1.0 if x >= 0 and * -1.0 if x < 0. Returns NaN if x is * NaN. * * @param x the value, a double * @return +1.0 or -1.0, depending on the sign of x */ public static double indicator(final double x) { if (Double.isNaN(x)) { return Double.NaN; } return x >= 0.0 ? 1.0 : -1.0; } /** * For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x < * 0. Returns NaN if x is NaN. * * @param x the value, a float * @return +1.0F or -1.0F, depending on the sign of x */ public static float indicator(final float x) { if (Float.isNaN(x)) { return Float.NaN; } return x >= 0.0F ? 1.0F : -1.0F; } /** * For an int value x, this method returns +1 if x >= 0 and -1 if x < 0. * * @param x the value, an int * @return +1 or -1, depending on the sign of x */ public static int indicator(final int x) { return x >= 0 ? 1 : -1; } /** * For a long value x, this method returns +1L if x >= 0 and -1L if x < 0. * * @param x the value, a long * @return +1L or -1L, depending on the sign of x */ public static long indicator(final long x) { return x >= 0L ? 1L : -1L; } /** * For a short value x, this method returns (short)(+1) if x >= 0 and * (short)(-1) if x < 0. * * @param x the value, a short * @return (short)(+1) or (short)(-1), depending on the sign of x */ public static short indicator(final short x) { return x >= ZS ? PS : NS; } /** *

* Returns the least common multiple of the absolute value of two numbers, * using the formula lcm(a,b) = (a / gcd(a,b)) * b. *

* Special cases: *
    *
  • The invocations lcm(Integer.MIN_VALUE, n) and * lcm(n, Integer.MIN_VALUE), where abs(n) is a * power of 2, throw an ArithmeticException, because the result * would be 2^31, which is too large for an int value.
  • *
  • The result of lcm(0, x) and lcm(x, 0) is * 0 for any x. *
* * @param a any number * @param b any number * @return the least common multiple, never negative * @throws ArithmeticException if the result cannot be represented as a nonnegative int * value * @since 1.1 */ public static int lcm(final int a, final int b) { if (a == 0 || b == 0) { return 0; } final int lcm = Math.abs(mulAndCheck(a / gcd(a, b), b)); if (lcm == Integer.MIN_VALUE) { throw MathRuntimeException.createArithmeticException( "overflow: lcm({0}, {1}) is 2^31", a, b); } return lcm; } /** *

* Returns the least common multiple of the absolute value of two numbers, * using the formula lcm(a,b) = (a / gcd(a,b)) * b. *

* Special cases: *
    *
  • The invocations lcm(Long.MIN_VALUE, n) and * lcm(n, Long.MIN_VALUE), where abs(n) is a * power of 2, throw an ArithmeticException, because the result * would be 2^63, which is too large for an int value.
  • *
  • The result of lcm(0L, x) and lcm(x, 0L) is * 0L for any x. *
* * @param a any number * @param b any number * @return the least common multiple, never negative * @throws ArithmeticException if the result cannot be represented as a nonnegative long * value * @since 2.1 */ public static long lcm(final long a, final long b) { if (a == 0 || b == 0) { return 0; } final long lcm = Math.abs(mulAndCheck(a / gcd(a, b), b)); if (lcm == Long.MIN_VALUE) { throw MathRuntimeException.createArithmeticException( "overflow: lcm({0}, {1}) is 2^63", a, b); } return lcm; } /** *

Returns the * logarithm * for base b of x. *

*

Returns NaN if either argument is negative. If * base is 0 and x is positive, 0 is returned. * If base is positive and x is 0, * Double.NEGATIVE_INFINITY is returned. If both arguments * are 0, the result is NaN.

* * @param base the base of the logarithm, must be greater than 0 * @param x argument, must be greater than 0 * @return the value of the logarithm - the number y such that base^y = x. * @since 1.2 */ public static double log(final double base, final double x) { return Math.log(x) / Math.log(base); } /** * Multiply two integers, checking for overflow. * * @param x a factor * @param y a factor * @return the product x*y * @throws ArithmeticException if the result can not be represented as an * int * @since 1.1 */ public static int mulAndCheck(final int x, final int y) { final long m = (long) x * (long) y; if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: mul"); } return (int) m; } /** * Multiply two long integers, checking for overflow. * * @param a first value * @param b second value * @return the product a * b * @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ public static long mulAndCheck(final long a, final long b) { final long ret; final String msg = "overflow: multiply"; if (a > b) { // use symmetry to reduce boundary cases ret = mulAndCheck(b, a); } else { if (a < 0) { if (b < 0) { // check for positive overflow with negative a, negative b if (a >= Long.MAX_VALUE / b) { ret = a * b; } else { throw new ArithmeticException(msg); } } else if (b > 0) { // check for negative overflow with negative a, positive b if (Long.MIN_VALUE / b <= a) { ret = a * b; } else { throw new ArithmeticException(msg); } } else { // assert b == 0 ret = 0; } } else if (a > 0) { // assert a > 0 // assert b > 0 // check for positive overflow with positive a, positive b if (a <= Long.MAX_VALUE / b) { ret = a * b; } else { throw new ArithmeticException(msg); } } else { // assert a == 0 ret = 0; } } return ret; } /** * Get the next machine representable number after a number, moving * in the direction of another number. *

* If direction is greater than or equal tod, * the smallest machine representable number strictly greater than * d is returned; otherwise the largest representable number * strictly less than d is returned.

*

* If d is NaN or Infinite, it is returned unchanged.

* * @param d base number * @param direction (the only important thing is whether * direction is greater or smaller than d) * @return the next machine representable number in the specified direction * @since 1.2 */ public static double nextAfter(final double d, final double direction) { // handling of some important special cases if (Double.isNaN(d) || Double.isInfinite(d)) { return d; } else if (d == 0) { return direction < 0 ? -Double.MIN_VALUE : Double.MIN_VALUE; } // special cases MAX_VALUE to infinity and MIN_VALUE to 0 // are handled just as normal numbers // split the double in raw components final long bits = Double.doubleToLongBits(d); final long sign = bits & 0x8000000000000000L; final long exponent = bits & 0x7ff0000000000000L; final long mantissa = bits & 0x000fffffffffffffL; if (d * (direction - d) >= 0) { // we should increase the mantissa if (mantissa == 0x000fffffffffffffL) { return Double.longBitsToDouble(sign | exponent + 0x0010000000000000L); } else { return Double.longBitsToDouble(sign | exponent | mantissa + 1); } } else { // we should decrease the mantissa if (mantissa == 0L) { return Double.longBitsToDouble(sign | exponent - 0x0010000000000000L | 0x000fffffffffffffL); } else { return Double.longBitsToDouble(sign | exponent | mantissa - 1); } } } /** * Scale a number by 2scaleFactor. *

If d is 0 or NaN or Infinite, it is returned unchanged.

* * @param d base number * @param scaleFactor power of two by which d sould be multiplied * @return d × 2scaleFactor * @since 2.0 */ public static double scalb(final double d, final int scaleFactor) { // handling of some important special cases if (d == 0 || Double.isNaN(d) || Double.isInfinite(d)) { return d; } // split the double in raw components final long bits = Double.doubleToLongBits(d); final long exponent = bits & 0x7ff0000000000000L; final long rest = bits & 0x800fffffffffffffL; // shift the exponent final long newBits = rest | exponent + ((long) scaleFactor << 52); return Double.longBitsToDouble(newBits); } /** * Normalize an angle in a 2&pi wide interval around a center value. *

This method has three main uses:

*
    *
  • normalize an angle between 0 and 2π:
    * a = MathUtils.normalizeAngle(a, Math.PI);
  • *
  • normalize an angle between -π and +π
    * a = MathUtils.normalizeAngle(a, 0.0);
  • *
  • compute the angle between two defining angular positions:
    * angle = MathUtils.normalizeAngle(end, start) - start;
  • *
*

Note that due to numerical accuracy and since π cannot be represented * exactly, the result interval is closed, it cannot be half-closed * as would be more satisfactory in a purely mathematical view.

* * @param a angle to normalize * @param center center of the desired 2π interval for the result * @return a-2kπ with integer k and center-π <= a-2kπ <= center+π * @since 1.2 */ public static double normalizeAngle(final double a, final double center) { return a - TWO_PI * Math.floor((a + Math.PI - center) / TWO_PI); } /** *

Normalizes an array to make it sum to a specified value. * Returns the result of the transformation

     *    x |-> x * normalizedSum / sum
     * 
* applied to each non-NaN element x of the input array, where sum is the * sum of the non-NaN entries in the input array.

*

*

Throws IllegalArgumentException if normalizedSum is infinite * or NaN and ArithmeticException if the input array contains any infinite elements * or sums to 0

*

*

Ignores (i.e., copies unchanged to the output array) NaNs in the input array.

* * @param values input array to be normalized * @param normalizedSum target sum for the normalized array * @return normalized array * @throws ArithmeticException if the input array contains infinite elements or sums to zero * @throws IllegalArgumentException if the target sum is infinite or NaN * @since 2.1 */ public static double[] normalizeArray(final double[] values, final double normalizedSum) throws ArithmeticException, IllegalArgumentException { if (Double.isInfinite(normalizedSum)) { throw MathRuntimeException.createIllegalArgumentException( "Cannot normalize to an infinite value"); } if (Double.isNaN(normalizedSum)) { throw MathRuntimeException.createIllegalArgumentException( "Cannot normalize to NaN"); } double sum = 0d; final int len = values.length; final double[] out = new double[len]; for (int i = 0; i < len; i++) { if (Double.isInfinite(values[i])) { throw MathRuntimeException.createArithmeticException( "Array contains an infinite element, {0} at index {1}", values[i], i); } if (!Double.isNaN(values[i])) { sum += values[i]; } } if (sum == 0) { throw MathRuntimeException.createArithmeticException( "Array sums to zero"); } for (int i = 0; i < len; i++) { if (Double.isNaN(values[i])) { out[i] = Double.NaN; } else { out[i] = values[i] * normalizedSum / sum; } } return out; } /** * Round the given value to the specified number of decimal places. The * value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 */ public static double round(final double x, final int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Round the given value to the specified number of decimal places. The * value is rounded using the given method which is any method defined in * {@link BigDecimal}. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ public static double round(final double x, final int scale, final int roundingMethod) { try { return new BigDecimal (Double.toString(x)) .setScale(scale, roundingMethod) .doubleValue(); } catch (final NumberFormatException ex) { if (Double.isInfinite(x)) { return x; } else { return Double.NaN; } } } /** * Round the given value to the specified number of decimal places. The * value is rounding using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 */ public static float round(final float x, final int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Round the given value to the specified number of decimal places. The * value is rounded using the given method which is any method defined in * {@link BigDecimal}. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ public static float round(final float x, final int scale, final int roundingMethod) { final float sign = indicator(x); final float factor = (float) Math.pow(10.0f, scale) * sign; return (float) roundUnscaled(x * factor, sign, roundingMethod) / factor; } /** * Round the given non-negative, value to the "nearest" integer. Nearest is * determined by the rounding method specified. Rounding methods are defined * in {@link BigDecimal}. * * @param unscaled the value to round. * @param sign the sign of the original, scaled value. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ private static double roundUnscaled(double unscaled, final double sign, final int roundingMethod) { switch (roundingMethod) { case BigDecimal.ROUND_CEILING: if (sign == -1) { unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } else { unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); } break; case BigDecimal.ROUND_DOWN: unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); break; case BigDecimal.ROUND_FLOOR: if (sign == -1) { unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); } else { unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } break; case BigDecimal.ROUND_HALF_DOWN: { unscaled = nextAfter(unscaled, Double.NEGATIVE_INFINITY); final double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) { unscaled = Math.ceil(unscaled); } else { unscaled = Math.floor(unscaled); } break; } case BigDecimal.ROUND_HALF_EVEN: { final double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) { unscaled = Math.ceil(unscaled); } else if (fraction < 0.5) { unscaled = Math.floor(unscaled); } else { // The following equality test is intentional and needed for rounding purposes if (Math.floor(unscaled) / 2.0 == Math.floor(Math .floor(unscaled) / 2.0)) { // even unscaled = Math.floor(unscaled); } else { // odd unscaled = Math.ceil(unscaled); } } break; } case BigDecimal.ROUND_HALF_UP: { unscaled = nextAfter(unscaled, Double.POSITIVE_INFINITY); final double fraction = unscaled - Math.floor(unscaled); if (fraction >= 0.5) { unscaled = Math.ceil(unscaled); } else { unscaled = Math.floor(unscaled); } break; } case BigDecimal.ROUND_UNNECESSARY: if (unscaled != Math.floor(unscaled)) { throw new ArithmeticException("Inexact result from rounding"); } break; case BigDecimal.ROUND_UP: unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); break; default: throw MathRuntimeException.createIllegalArgumentException( "invalid rounding method {0}, valid methods: {1} ({2}), {3} ({4})," + " {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16})", roundingMethod, "ROUND_CEILING", BigDecimal.ROUND_CEILING, "ROUND_DOWN", BigDecimal.ROUND_DOWN, "ROUND_FLOOR", BigDecimal.ROUND_FLOOR, "ROUND_HALF_DOWN", BigDecimal.ROUND_HALF_DOWN, "ROUND_HALF_EVEN", BigDecimal.ROUND_HALF_EVEN, "ROUND_HALF_UP", BigDecimal.ROUND_HALF_UP, "ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY, "ROUND_UP", BigDecimal.ROUND_UP); } return unscaled; } /** * Returns the sign * for byte value x. *

* For a byte value x, this method returns (byte)(+1) if x > 0, (byte)(0) if * x = 0, and (byte)(-1) if x < 0.

* * @param x the value, a byte * @return (byte)(+1), (byte)(0), or (byte)(-1), depending on the sign of x */ public static byte sign(final byte x) { return x == ZB ? ZB : x > ZB ? PB : NB; } /** * Returns the sign * for double precision x. *

* For a double value x, this method returns * +1.0 if x > 0, 0.0 if * x = 0.0, and -1.0 if x < 0. * Returns NaN if x is NaN.

* * @param x the value, a double * @return +1.0, 0.0, or -1.0, depending on the sign of x */ public static double sign(final double x) { if (Double.isNaN(x)) { return Double.NaN; } return x == 0.0 ? 0.0 : x > 0.0 ? 1.0 : -1.0; } /** * Returns the sign * for float value x. *

* For a float value x, this method returns +1.0F if x > 0, 0.0F if x = * 0.0F, and -1.0F if x < 0. Returns NaN if x * is NaN.

* * @param x the value, a float * @return +1.0F, 0.0F, or -1.0F, depending on the sign of x */ public static float sign(final float x) { if (Float.isNaN(x)) { return Float.NaN; } return x == 0.0F ? 0.0F : x > 0.0F ? 1.0F : -1.0F; } /** * Returns the sign * for int value x. *

* For an int value x, this method returns +1 if x > 0, 0 if x = 0, and -1 * if x < 0.

* * @param x the value, an int * @return +1, 0, or -1, depending on the sign of x */ public static int sign(final int x) { return x == 0 ? 0 : x > 0 ? 1 : -1; } /** * Returns the sign * for long value x. *

* For a long value x, this method returns +1L if x > 0, 0L if x = 0, and * -1L if x < 0.

* * @param x the value, a long * @return +1L, 0L, or -1L, depending on the sign of x */ public static long sign(final long x) { return x == 0L ? 0L : x > 0L ? 1L : -1L; } /** * Returns the sign * for short value x. *

* For a short value x, this method returns (short)(+1) if x > 0, (short)(0) * if x = 0, and (short)(-1) if x < 0.

* * @param x the value, a short * @return (short)(+1), (short)(0), or (short)(-1), depending on the sign of * x */ public static short sign(final short x) { return x == ZS ? ZS : x > ZS ? PS : NS; } /** * Returns the * hyperbolic sine of x. * * @param x double value for which to find the hyperbolic sine * @return hyperbolic sine of x */ public static double sinh(final double x) { return (Math.exp(x) - Math.exp(-x)) / 2.0; } /** * Subtract two integers, checking for overflow. * * @param x the minuend * @param y the subtrahend * @return the difference x-y * @throws ArithmeticException if the result can not be represented as an * int * @since 1.1 */ public static int subAndCheck(final int x, final int y) { final long s = (long) x - (long) y; if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: subtract"); } return (int) s; } /** * Subtract two long integers, checking for overflow. * * @param a first value * @param b second value * @return the difference a-b * @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ public static long subAndCheck(final long a, final long b) { final long ret; final String msg = "overflow: subtract"; if (b == Long.MIN_VALUE) { if (a < 0) { ret = a - b; } else { throw new ArithmeticException(msg); } } else { // use additive inverse ret = addAndCheck(a, -b, msg); } return ret; } /** * Raise an int to an int power. * * @param k number to raise * @param e exponent (must be positive or null) * @return ke * @throws IllegalArgumentException if e is negative */ public static int pow(final int k, int e) throws IllegalArgumentException { if (e < 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot raise an integral value to a negative power ({0}^{1})", k, e); } int result = 1; int k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise an int to a long power. * * @param k number to raise * @param e exponent (must be positive or null) * @return ke * @throws IllegalArgumentException if e is negative */ public static int pow(final int k, long e) throws IllegalArgumentException { if (e < 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot raise an integral value to a negative power ({0}^{1})", k, e); } int result = 1; int k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise a long to an int power. * * @param k number to raise * @param e exponent (must be positive or null) * @return ke * @throws IllegalArgumentException if e is negative */ public static long pow(final long k, int e) throws IllegalArgumentException { if (e < 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot raise an integral value to a negative power ({0}^{1})", k, e); } long result = 1l; long k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise a long to a long power. * * @param k number to raise * @param e exponent (must be positive or null) * @return ke * @throws IllegalArgumentException if e is negative */ public static long pow(final long k, long e) throws IllegalArgumentException { if (e < 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot raise an integral value to a negative power ({0}^{1})", k, e); } long result = 1l; long k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise a BigInteger to an int power. * * @param k number to raise * @param e exponent (must be positive or null) * @return ke * @throws IllegalArgumentException if e is negative */ public static BigInteger pow(final BigInteger k, final int e) throws IllegalArgumentException { if (e < 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot raise an integral value to a negative power ({0}^{1})", k, e); } return k.pow(e); } /** * Raise a BigInteger to a long power. * * @param k number to raise * @param e exponent (must be positive or null) * @return ke * @throws IllegalArgumentException if e is negative */ public static BigInteger pow(final BigInteger k, long e) throws IllegalArgumentException { if (e < 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot raise an integral value to a negative power ({0}^{1})", k, e); } BigInteger result = BigInteger.ONE; BigInteger k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result = result.multiply(k2p); } k2p = k2p.multiply(k2p); e = e >> 1; } return result; } /** * Raise a BigInteger to a BigInteger power. * * @param k number to raise * @param e exponent (must be positive or null) * @return ke * @throws IllegalArgumentException if e is negative */ public static BigInteger pow(final BigInteger k, BigInteger e) throws IllegalArgumentException { if (e.compareTo(BigInteger.ZERO) < 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot raise an integral value to a negative power ({0}^{1})", k, e); } BigInteger result = BigInteger.ONE; BigInteger k2p = k; while (!BigInteger.ZERO.equals(e)) { if (e.testBit(0)) { result = result.multiply(k2p); } k2p = k2p.multiply(k2p); e = e.shiftRight(1); } return result; } /** * Calculates the L1 (sum of abs) distance between two points. * * @param p1 the first point * @param p2 the second point * @return the L1 distance between the two points */ public static double distance1(final double[] p1, final double[] p2) { double sum = 0; for (int i = 0; i < p1.length; i++) { sum += Math.abs(p1[i] - p2[i]); } return sum; } /** * Calculates the L1 (sum of abs) distance between two points. * * @param p1 the first point * @param p2 the second point * @return the L1 distance between the two points */ public static int distance1(final int[] p1, final int[] p2) { int sum = 0; for (int i = 0; i < p1.length; i++) { sum += Math.abs(p1[i] - p2[i]); } return sum; } /** * Calculates the L2 (Euclidean) distance between two points. * * @param p1 the first point * @param p2 the second point * @return the L2 distance between the two points */ public static double distance(final double[] p1, final double[] p2) { double sum = 0; for (int i = 0; i < p1.length; i++) { final double dp = p1[i] - p2[i]; sum += dp * dp; } return Math.sqrt(sum); } /** * Calculates the L2 (Euclidean) distance between two points. * * @param p1 the first point * @param p2 the second point * @return the L2 distance between the two points */ public static double distance(final int[] p1, final int[] p2) { double sum = 0; for (int i = 0; i < p1.length; i++) { final double dp = p1[i] - p2[i]; sum += dp * dp; } return Math.sqrt(sum); } /** * Calculates the L (max of abs) distance between two points. * * @param p1 the first point * @param p2 the second point * @return the L distance between the two points */ public static double distanceInf(final double[] p1, final double[] p2) { double max = 0; for (int i = 0; i < p1.length; i++) { max = Math.max(max, Math.abs(p1[i] - p2[i])); } return max; } /** * Calculates the L (max of abs) distance between two points. * * @param p1 the first point * @param p2 the second point * @return the L distance between the two points */ public static int distanceInf(final int[] p1, final int[] p2) { int max = 0; for (int i = 0; i < p1.length; i++) { max = Math.max(max, Math.abs(p1[i] - p2[i])); } return max; } /** * Checks that the given array is sorted. * * @param val Values * @param dir Order direction (-1 for decreasing, 1 for increasing) * @param strict Whether the order should be strict * @throws IllegalArgumentException if the array is not sorted. */ public static void checkOrder(final double[] val, final int dir, final boolean strict) { double previous = val[0]; final int max = val.length; for (int i = 1; i < max; i++) { if (dir > 0) { if (strict) { if (val[i] <= previous) { throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not strictly increasing ({2} >= {3})", i - 1, i, previous, val[i]); } } else { if (val[i] < previous) { throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not increasing ({2} > {3})", i - 1, i, previous, val[i]); } } } else { if (strict) { if (val[i] >= previous) { throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not strictly decreasing ({2} <= {3})", i - 1, i, previous, val[i]); } } else { if (val[i] > previous) { throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not decreasing ({2} < {3})", i - 1, i, previous, val[i]); } } } previous = val[i]; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy