All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.maxent.ModelTrainer Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package opennlp.maxent;

import java.io.File;
import java.io.FileReader;

import opennlp.maxent.io.SuffixSensitiveGISModelWriter;
import opennlp.model.AbstractModel;
import opennlp.model.AbstractModelWriter;
import opennlp.model.EventStream;
import opennlp.model.OnePassDataIndexer;
import opennlp.model.OnePassRealValueDataIndexer;
import opennlp.perceptron.PerceptronTrainer;
import opennlp.perceptron.SuffixSensitivePerceptronModelWriter;

/**
 * Main class which calls the GIS procedure after building the EventStream from
 * the data.
 */
public class ModelTrainer {

  // some parameters if you want to play around with the smoothing option
  // for model training. This can improve model accuracy, though training
  // will potentially take longer and use more memory. Model size will also
  // be larger. Initial testing indicates improvements for models built on
  // small data sets and few outcomes, but performance degradation for those
  // with large data sets and lots of outcomes.
  public static boolean USE_SMOOTHING = false;
  public static double SMOOTHING_OBSERVATION = 0.1;

  private static void usage() {
    System.err.println("java ModelTrainer [-real] dataFile modelFile");
    System.exit(1);
  }

  /**
   * Main method. Call as follows:
   * 

* java ModelTrainer dataFile modelFile */ public static void main(String[] args) { int ai = 0; boolean real = false; String type = "maxent"; int maxit = 100; int cutoff = 1; double sigma = 1.0; if (args.length == 0) { usage(); } while (args[ai].startsWith("-")) { if (args[ai].equals("-real")) { real = true; } else if (args[ai].equals("-perceptron")) { type = "perceptron"; } else if (args[ai].equals("-maxit")) { maxit = Integer.parseInt(args[++ai]); } else if (args[ai].equals("-cutoff")) { cutoff = Integer.parseInt(args[++ai]); } else if (args[ai].equals("-sigma")) { sigma = Double.parseDouble(args[++ai]); } else { System.err.println("Unknown option: " + args[ai]); usage(); } ai++; } String dataFileName = args[ai++]; String modelFileName = args[ai]; try { FileReader datafr = new FileReader(new File(dataFileName)); EventStream es; if (!real) { es = new BasicEventStream(new PlainTextByLineDataStream(datafr), ","); } else { es = new RealBasicEventStream(new PlainTextByLineDataStream(datafr)); } File outputFile = new File(modelFileName); AbstractModelWriter writer; AbstractModel model; if (type.equals("maxent")) { GIS.SMOOTHING_OBSERVATION = SMOOTHING_OBSERVATION; if (!real) { model = GIS.trainModel(es, maxit, cutoff, sigma); } else { model = GIS.trainModel(maxit, new OnePassRealValueDataIndexer(es, cutoff), USE_SMOOTHING); } writer = new SuffixSensitiveGISModelWriter(model, outputFile); } else if (type.equals("perceptron")) { //System.err.println("Perceptron training"); model = new PerceptronTrainer().trainModel(maxit, new OnePassDataIndexer(es, cutoff), cutoff); writer = new SuffixSensitivePerceptronModelWriter(model, outputFile); } else { throw new RuntimeException("Unknown model type: " + type); } writer.persist(); } catch (Exception e) { System.out.print("Unable to create model due to exception: "); System.out.println(e); e.printStackTrace(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy