opennlp.maxent.TrainEval Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package opennlp.maxent;
import java.io.IOException;
import java.io.Reader;
import opennlp.model.Event;
import opennlp.model.EventStream;
import opennlp.model.MaxentModel;
/**
* Trains or evaluates maxent components which have implemented the Evalable
* interface.
*/
public class TrainEval {
public static void eval(MaxentModel model, Reader r, Evalable e) {
eval(model, r, e, false);
}
public static void eval(MaxentModel model, Reader r,
Evalable e, boolean verbose) {
float totPos=0, truePos=0, falsePos=0;
Event[] events = (e.getEventCollector(r)).getEvents(true);
//MaxentModel model = e.getModel(dir, name);
String negOutcome = e.getNegativeOutcome();
for (Event event : events) {
String guess = model.getBestOutcome(model.eval(event.getContext()));
String ans = event.getOutcome();
if (verbose)
System.out.println(ans + " " + guess);
if (!ans.equals(negOutcome))
totPos++;
if (!guess.equals(negOutcome) && !guess.equals(ans))
falsePos++;
else if (ans.equals(guess))
truePos++;
}
System.out.println("Precision: " + truePos/(truePos+falsePos));
System.out.println("Recall: " + truePos/totPos);
}
public static MaxentModel train(EventStream events, int cutoff) throws IOException {
return GIS.trainModel(events, 100, cutoff);
}
public static void run(String[] args, Evalable e) throws IOException {
// TOM: Was commented out to remove dependency on gnu getopt.
// String dir = "./";
// String stem = "maxent";
// int cutoff = 0; // default to no cutoff
// boolean train = false;
// boolean verbose = false;
// boolean local = false;
// gnu.getopt.Getopt g =
// new gnu.getopt.Getopt("maxent", args, "d:s:c:tvl");
// int c;
// while ((c = g.getopt()) != -1) {
// switch(c) {
// case 'd':
// dir = g.getOptarg()+"/";
// break;
// case 's':
// stem = g.getOptarg();
// break;
// case 'c':
// cutoff = Integer.parseInt(g.getOptarg());
// break;
// case 't':
// train = true;
// break;
// case 'l':
// local = true;
// break;
// case 'v':
// verbose = true;
// break;
// }
// }
//
// int lastIndex = g.getOptind();
// if (lastIndex >= args.length) {
// System.out.println("This is a usage message from opennlp.maxent.TrainEval. You have called the training procedure for a maxent application with the incorrect arguments. These are the options:");
//
// System.out.println("\nOptions for defining the model location and name:");
// System.out.println(" -d ");
// System.out.println("\tThe directory in which to store the model.");
// System.out.println(" -s ");
// System.out.println("\tThe name of the model, e.g. EnglishPOS.bin.gz or NameFinder.txt.");
//
// System.out.println("\nOptions for training:");
// System.out.println(" -c ");
// System.out.println("\tAn integer cutoff level to reduce infrequent contextual predicates.");
// System.out.println(" -t\tTrain a model. If absent, the given model will be loaded and evaluated.");
// System.out.println("\nOptions for evaluation:");
// System.out.println(" -l\t the evaluation method of class that uses the model. If absent, TrainEval's eval method is used.");
// System.out.println(" -v\t verbose.");
// System.out.println("\nThe final argument is the data file to be loaded and used for either training or evaluation.");
// System.out.println("\nAs an example for training:\n java opennlp.grok.preprocess.postag.POSTaggerME -t -d ./ -s EnglishPOS.bin.gz -c 7 postag.data");
// System.exit(0);
// }
//
// FileReader datafr = new FileReader(args[lastIndex]);
//
// if (train) {
// MaxentModel m =
// train(new EventCollectorAsStream(e.getEventCollector(datafr)),
// cutoff);
// new SuffixSensitiveGISModelWriter((AbstractModel)m,
// new File(dir+stem)).persist();
// }
// else {
// MaxentModel model =
// new SuffixSensitiveGISModelReader(new File(dir+stem)).getModel();
// if (local) {
// e.localEval(model, datafr, e, verbose);
// } else {
// eval(model, datafr, e, verbose);
// }
// }
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy