opennlp.tools.tokenize.TokenizerCrossValidator Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.tokenize;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectStreamException;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.PlainTextByLineStream;
import opennlp.tools.util.eval.CrossValidationPartitioner;
import opennlp.tools.util.eval.FMeasure;
public class TokenizerCrossValidator {
private final String language;
private final boolean alphaNumericOptimization;
private final int cutoff;
private final int iterations;
private FMeasure fmeasure = new FMeasure();
public TokenizerCrossValidator(String language, boolean alphaNumericOptimization, int cutoff, int iterations) {
this.language = language;
this.alphaNumericOptimization = alphaNumericOptimization;
this.cutoff = cutoff;
this.iterations = iterations;
}
public TokenizerCrossValidator(String language, boolean alphaNumericOptimization) {
this(language, alphaNumericOptimization, 5, 100);
}
public void evaluate(ObjectStream samples, int nFolds)
throws IOException {
CrossValidationPartitioner partitioner =
new CrossValidationPartitioner(samples, nFolds);
while (partitioner.hasNext()) {
CrossValidationPartitioner.TrainingSampleStream trainingSampleStream =
partitioner.next();
// Maybe throws IOException if temporary file handling fails ...
TokenizerModel model = TokenizerME.train(language, trainingSampleStream,
alphaNumericOptimization, cutoff, iterations);
TokenizerEvaluator evaluator = new TokenizerEvaluator(new TokenizerME(model));
evaluator.evaluate(trainingSampleStream.getTestSampleStream());
fmeasure.mergeInto(evaluator.getFMeasure());
}
}
public FMeasure getFMeasure() {
return fmeasure;
}
private static void usage() {
System.err.println("Usage: TokenizerCrossValidator -encoding charset -lang language trainData");
System.err.println("-encoding charset specifies the encoding which should be used ");
System.err.println(" for reading and writing text.");
System.err.println("-lang language specifies the language which ");
System.err.println(" is being processed.");
System.exit(1);
}
@Deprecated
public static void main(String[] args) throws IOException, ObjectStreamException {
int ai=0;
String encoding = null;
String lang = null;
if (args.length != 5) {
usage();
}
while (args[ai].startsWith("-")) {
if (args[ai].equals("-encoding")) {
ai++;
if (ai < args.length) {
encoding = args[ai];
ai++;
}
else {
usage();
}
}
else if (args[ai].equals("-lang")) {
ai++;
if (ai < args.length) {
lang = args[ai];
ai++;
}
else {
usage();
}
}
else {
usage();
}
}
File trainingDataFile = new File(args[ai++]);
FileInputStream trainingDataIn = new FileInputStream(trainingDataFile);
ObjectStream lineStream = new PlainTextByLineStream(trainingDataIn.getChannel(), encoding);
ObjectStream sampleStream = new TokenSampleStream(lineStream);
TokenizerCrossValidator validator = new TokenizerCrossValidator(lang, false);
validator.evaluate(sampleStream, 10);
FMeasure result = validator.getFMeasure();
System.out.println(result.toString());
}
}