opennlp.tools.ml.model.OnePassRealValueDataIndexer Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package opennlp.tools.ml.model;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import opennlp.tools.util.InsufficientTrainingDataException;
import opennlp.tools.util.ObjectStream;
/**
* An indexer for maxent model data which handles cutoffs for uncommon
* contextual predicates and provides a unique integer index for each of the
* predicates and maintains event values.
*/
public class OnePassRealValueDataIndexer extends OnePassDataIndexer {
float[][] values;
public OnePassRealValueDataIndexer(ObjectStream eventStream, int cutoff, boolean sort) throws IOException {
super(eventStream,cutoff,sort);
}
/**
* Two argument constructor for DataIndexer.
* @param eventStream An Event[] which contains the a list of all the Events
* seen in the training data.
* @param cutoff The minimum number of times a predicate must have been
* observed in order to be included in the model.
*/
public OnePassRealValueDataIndexer(ObjectStream eventStream, int cutoff) throws IOException {
super(eventStream,cutoff);
}
public float[][] getValues() {
return values;
}
protected int sortAndMerge(List eventsToCompare,boolean sort) throws InsufficientTrainingDataException {
int numUniqueEvents = super.sortAndMerge(eventsToCompare,sort);
values = new float[numUniqueEvents][];
int numEvents = eventsToCompare.size();
for (int i = 0, j = 0; i < numEvents; i++) {
ComparableEvent evt = eventsToCompare.get(i);
if (null == evt) {
continue; // this was a dupe, skip over it.
}
values[j++] = evt.values;
}
return numUniqueEvents;
}
protected List index(LinkedList events, Map predicateIndex) {
Map omap = new HashMap<>();
int numEvents = events.size();
int outcomeCount = 0;
List eventsToCompare = new ArrayList<>(numEvents);
List indexedContext = new ArrayList<>();
for (int eventIndex=0; eventIndex 0) {
int[] cons = new int[indexedContext.size()];
for (int ci=0;ci