opennlp.tools.ml.naivebayes.NaiveBayesModelWriter Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package opennlp.tools.ml.naivebayes;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import opennlp.tools.ml.model.AbstractModel;
import opennlp.tools.ml.model.AbstractModelWriter;
import opennlp.tools.ml.model.ComparablePredicate;
import opennlp.tools.ml.model.Context;
/**
* Abstract parent class for NaiveBayes writers. It provides the persist method
* which takes care of the structure of a stored document, and requires an
* extending class to define precisely how the data should be stored.
*/
public abstract class NaiveBayesModelWriter extends AbstractModelWriter {
protected Context[] PARAMS;
protected String[] OUTCOME_LABELS;
protected String[] PRED_LABELS;
int numOutcomes;
public NaiveBayesModelWriter(AbstractModel model) {
Object[] data = model.getDataStructures();
this.numOutcomes = model.getNumOutcomes();
PARAMS = (Context[]) data[0];
@SuppressWarnings("unchecked")
Map pmap = (Map) data[1];
OUTCOME_LABELS = (String[]) data[2];
PRED_LABELS = new String[pmap.size()];
for (String pred : pmap.keySet()) {
PRED_LABELS[pmap.get(pred)] = pred;
}
}
protected ComparablePredicate[] sortValues() {
ComparablePredicate[] sortPreds;
ComparablePredicate[] tmpPreds = new ComparablePredicate[PARAMS.length];
int[] tmpOutcomes = new int[numOutcomes];
double[] tmpParams = new double[numOutcomes];
int numPreds = 0;
//remove parameters with 0 weight and predicates with no parameters
for (int pid = 0; pid < PARAMS.length; pid++) {
int numParams = 0;
double[] predParams = PARAMS[pid].getParameters();
int[] outcomePattern = PARAMS[pid].getOutcomes();
for (int pi = 0; pi < predParams.length; pi++) {
if (predParams[pi] != 0d) {
tmpOutcomes[numParams] = outcomePattern[pi];
tmpParams[numParams] = predParams[pi];
numParams++;
}
}
int[] activeOutcomes = new int[numParams];
double[] activeParams = new double[numParams];
for (int pi = 0; pi < numParams; pi++) {
activeOutcomes[pi] = tmpOutcomes[pi];
activeParams[pi] = tmpParams[pi];
}
if (numParams != 0) {
tmpPreds[numPreds] = new ComparablePredicate(PRED_LABELS[pid], activeOutcomes, activeParams);
numPreds++;
}
}
System.err.println("Compressed " + PARAMS.length + " parameters to " + numPreds);
sortPreds = new ComparablePredicate[numPreds];
System.arraycopy(tmpPreds, 0, sortPreds, 0, numPreds);
Arrays.sort(sortPreds);
return sortPreds;
}
protected List> computeOutcomePatterns(ComparablePredicate[] sorted) {
ComparablePredicate cp = sorted[0];
List> outcomePatterns = new ArrayList<>();
List newGroup = new ArrayList<>();
for (ComparablePredicate predicate : sorted) {
if (cp.compareTo(predicate) == 0) {
newGroup.add(predicate);
} else {
cp = predicate;
outcomePatterns.add(newGroup);
newGroup = new ArrayList<>();
newGroup.add(predicate);
}
}
outcomePatterns.add(newGroup);
System.err.println(outcomePatterns.size() + " outcome patterns");
return outcomePatterns;
}
/**
* Writes the model to disk, using the writeX()
methods
* provided by extending classes.
*
* If you wish to create a NaiveBayesModelWriter which uses a different
* structure, it will be necessary to override the persist method in
* addition to implementing the writeX()
methods.
*/
public void persist() throws IOException {
// the type of model (NaiveBayes)
writeUTF("NaiveBayes");
// the mapping from outcomes to their integer indexes
writeInt(OUTCOME_LABELS.length);
for (String label : OUTCOME_LABELS) {
writeUTF(label);
}
// the mapping from predicates to the outcomes they contributed to.
// The sorting is done so that we actually can write this out more
// compactly than as the entire list.
ComparablePredicate[] sorted = sortValues();
List> compressed = computeOutcomePatterns(sorted);
writeInt(compressed.size());
for (List a : compressed) {
writeUTF(a.size() + a.get(0).toString());
}
// the mapping from predicate names to their integer indexes
writeInt(sorted.length);
for (ComparablePredicate s : sorted) {
writeUTF(s.name);
}
// write out the parameters
for (int i = 0; i < sorted.length; i++)
for (int j = 0; j < sorted[i].params.length; j++)
writeDouble(sorted[i].params[j]);
close();
}
}