opennlp.tools.ngram.NGramModel Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.ngram;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import opennlp.tools.dictionary.Dictionary;
import opennlp.tools.dictionary.serializer.Attributes;
import opennlp.tools.dictionary.serializer.DictionarySerializer;
import opennlp.tools.dictionary.serializer.Entry;
import opennlp.tools.util.InvalidFormatException;
import opennlp.tools.util.StringList;
import opennlp.tools.util.StringUtil;
/**
* The {@link NGramModel} can be used to crate ngrams and character ngrams.
*
* @see StringList
*/
public class NGramModel implements Iterable{
protected static final String COUNT = "count";
private Map mNGrams = new HashMap<>();
/**
* Initializes an empty instance.
*/
public NGramModel() {
}
/**
* Initializes the current instance.
*
* @param in the serialized model stream
* @throws IOException
*/
public NGramModel(InputStream in) throws IOException {
DictionarySerializer.create(in, entry -> {
int count;
String countValueString = null;
try {
countValueString = entry.getAttributes().getValue(COUNT);
if (countValueString == null) {
throw new InvalidFormatException(
"The count attribute must be set!");
}
count = Integer.parseInt(countValueString);
} catch (NumberFormatException e) {
throw new InvalidFormatException("The count attribute '" + countValueString
+ "' must be a number!", e);
}
add(entry.getTokens());
setCount(entry.getTokens(), count);
});
}
/**
* Retrieves the count of the given ngram.
*
* @param ngram an ngram
* @return count of the ngram or 0 if it is not contained
*
*/
public int getCount(StringList ngram) {
Integer count = mNGrams.get(ngram);
if (count == null) {
return 0;
}
return count;
}
/**
* Sets the count of an existing ngram.
*
* @param ngram
* @param count
*/
public void setCount(StringList ngram, int count) {
Integer oldCount = mNGrams.put(ngram, count);
if (oldCount == null) {
mNGrams.remove(ngram);
throw new NoSuchElementException();
}
}
/**
* Adds one NGram, if it already exists the count increase by one.
*
* @param ngram
*/
public void add(StringList ngram) {
if (contains(ngram)) {
setCount(ngram, getCount(ngram) + 1);
} else {
mNGrams.put(ngram, 1);
}
}
/**
* Adds NGrams up to the specified length to the current instance.
*
* @param ngram the tokens to build the uni-grams, bi-grams, tri-grams, ..
* from.
* @param minLength - minimal length
* @param maxLength - maximal length
*/
public void add(StringList ngram, int minLength, int maxLength) {
if (minLength < 1 || maxLength < 1)
throw new IllegalArgumentException("minLength and maxLength param must be at least 1. " +
"minLength=" + minLength + ", maxLength= " + maxLength);
if (minLength > maxLength)
throw new IllegalArgumentException("minLength param must not be larger than " +
"maxLength param. minLength=" + minLength + ", maxLength= " + maxLength);
for (int lengthIndex = minLength; lengthIndex < maxLength + 1; lengthIndex++) {
for (int textIndex = 0;
textIndex + lengthIndex - 1 < ngram.size(); textIndex++) {
String[] grams = new String[lengthIndex];
for (int i = textIndex; i < textIndex + lengthIndex; i++) {
grams[i - textIndex] = ngram.getToken(i);
}
add(new StringList(grams));
}
}
}
/**
* Adds character NGrams to the current instance.
*
* @param chars
* @param minLength
* @param maxLength
*/
public void add(String chars, int minLength, int maxLength) {
for (int lengthIndex = minLength; lengthIndex < maxLength + 1; lengthIndex++) {
for (int textIndex = 0;
textIndex + lengthIndex - 1 < chars.length(); textIndex++) {
String gram = StringUtil.toLowerCase(
chars.substring(textIndex, textIndex + lengthIndex));
add(new StringList(new String[]{gram}));
}
}
}
/**
* Removes the specified tokens form the NGram model, they are just dropped.
*
* @param tokens
*/
public void remove(StringList tokens) {
mNGrams.remove(tokens);
}
/**
* Checks fit he given tokens are contained by the current instance.
*
* @param tokens
*
* @return true if the ngram is contained
*/
public boolean contains(StringList tokens) {
return mNGrams.containsKey(tokens);
}
/**
* Retrieves the number of {@link StringList} entries in the current instance.
*
* @return number of different grams
*/
public int size() {
return mNGrams.size();
}
/**
* Retrieves an {@link Iterator} over all {@link StringList} entries.
*
* @return iterator over all grams
*/
public Iterator iterator() {
return mNGrams.keySet().iterator();
}
/**
* Retrieves the total count of all Ngrams.
*
* @return total count of all ngrams
*/
public int numberOfGrams() {
int counter = 0;
for (StringList ngram : this) {
counter += getCount(ngram);
}
return counter;
}
/**
* Deletes all ngram which do appear less than the cutoffUnder value
* and more often than the cutoffOver value.
*
* @param cutoffUnder
* @param cutoffOver
*/
public void cutoff(int cutoffUnder, int cutoffOver) {
if (cutoffUnder > 0 || cutoffOver < Integer.MAX_VALUE) {
for (Iterator it = iterator(); it.hasNext(); ) {
StringList ngram = it.next();
int count = getCount(ngram);
if (count < cutoffUnder ||
count > cutoffOver) {
it.remove();
}
}
}
}
/**
* Creates a dictionary which contain all {@link StringList} which
* are in the current {@link NGramModel}.
*
* Entries which are only different in the case are merged into one.
*
* Calling this method is the same as calling {@link #toDictionary(boolean)} with true.
*
* @return a dictionary of the ngrams
*/
public Dictionary toDictionary() {
return toDictionary(false);
}
/**
* Creates a dictionary which contains all {@link StringList}s which
* are in the current {@link NGramModel}.
*
* @param caseSensitive Specifies whether case distinctions should be kept in the creation of the dictionary.
*
* @return a dictionary of the ngrams
*/
public Dictionary toDictionary(boolean caseSensitive) {
Dictionary dict = new Dictionary(caseSensitive);
for (StringList stringList : this) {
dict.put(stringList);
}
return dict;
}
/**
* Writes the ngram instance to the given {@link OutputStream}.
*
* @param out
*
* @throws IOException if an I/O Error during writing occurs
*/
public void serialize(OutputStream out) throws IOException {
Iterator entryIterator = new Iterator()
{
private Iterator mDictionaryIterator = NGramModel.this.iterator();
public boolean hasNext() {
return mDictionaryIterator.hasNext();
}
public Entry next() {
StringList tokens = mDictionaryIterator.next();
Attributes attributes = new Attributes();
attributes.setValue(COUNT, Integer.toString(getCount(tokens)));
return new Entry(tokens, attributes);
}
public void remove() {
throw new UnsupportedOperationException();
}
};
DictionarySerializer.serialize(out, entryIterator, false);
}
@Override
public boolean equals(Object obj) {
boolean result;
if (obj == this) {
result = true;
}
else if (obj instanceof NGramModel) {
NGramModel model = (NGramModel) obj;
result = mNGrams.equals(model.mNGrams);
}
else {
result = false;
}
return result;
}
@Override
public String toString() {
return "Size: " + size();
}
@Override
public int hashCode() {
return mNGrams.hashCode();
}
}