All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.tools.util.eval.Evaluator Maven / Gradle / Ivy

There is a newer version: 2.5.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package opennlp.tools.util.eval;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import opennlp.tools.util.ObjectStream;

/**
 * The {@link Evaluator} is an abstract base class for evaluators.
 *
 * Evaluation results are the arithmetic mean of the
 * scores calculated for each reference sample.
 */
public abstract class Evaluator {

  private List> listeners;

  @SafeVarargs
  public Evaluator(EvaluationMonitor... aListeners) {
    if (aListeners != null) {
      List> listenersList = new ArrayList<>(
          aListeners.length);
      for (EvaluationMonitor evaluationMonitor : aListeners) {
        if (evaluationMonitor != null) {
          listenersList.add(evaluationMonitor);
        }
      }
      listeners = Collections.unmodifiableList(listenersList);
    } else {
      listeners = Collections.emptyList();
    }
  }

  /**
   * Evaluates the given reference sample object.
   *
   * The implementation has to update the score after every invocation.
   *
   * @param reference the reference sample.
   *
   * @return the predicted sample
   */
  protected abstract T processSample(T reference);

  /**
   * Evaluates the given reference object. The default implementation calls
   * {@link Evaluator#processSample(Object)}
   *
   * 

* note: this method will be changed to private in the future. * Implementations should override {@link Evaluator#processSample(Object)} instead. * If this method is override, the implementation has to update the score * after every invocation. *

* * @param sample * the sample to be evaluated */ public void evaluateSample(T sample) { T predicted = processSample(sample); if(!listeners.isEmpty()) { if(sample.equals(predicted)) { for (EvaluationMonitor listener : listeners) { listener.correctlyClassified(sample, predicted); } } else { for (EvaluationMonitor listener : listeners) { listener.missclassified(sample, predicted); } } } } /** * Reads all sample objects from the stream * and evaluates each sample object with * {@link #evaluateSample(Object)} method. * * @param samples the stream of reference which * should be evaluated. * * @throws IOException IOException */ public void evaluate(ObjectStream samples) throws IOException { T sample; while ((sample = samples.read()) != null) { evaluateSample(sample); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy