opennlp.tools.parser.ParserCrossValidator Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.parser;
import java.io.IOException;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.TrainingParameters;
import opennlp.tools.util.eval.CrossValidationPartitioner;
import opennlp.tools.util.eval.FMeasure;
public class ParserCrossValidator {
private final String languageCode;
private final TrainingParameters params;
private final HeadRules rules;
private final FMeasure fmeasure = new FMeasure();
private ParserType parserType;
private ParserEvaluationMonitor[] monitors;
public ParserCrossValidator(String languageCode, TrainingParameters params,
HeadRules rules, ParserType parserType, ParserEvaluationMonitor... monitors) {
this.languageCode = languageCode;
this.params = params;
this.rules = rules;
this.parserType = parserType;
}
public void evaluate(ObjectStream samples, int nFolds) throws IOException {
CrossValidationPartitioner partitioner = new CrossValidationPartitioner<>(samples, nFolds);
while (partitioner.hasNext()) {
CrossValidationPartitioner.TrainingSampleStream trainingSampleStream = partitioner.next();
ParserModel model;
if (ParserType.CHUNKING.equals(parserType)) {
model = opennlp.tools.parser.chunking.Parser.train(languageCode, samples, rules, params);
}
else if (ParserType.TREEINSERT.equals(parserType)) {
model = opennlp.tools.parser.treeinsert.Parser.train(languageCode, samples, rules, params);
}
else {
throw new IllegalStateException("Unexpected parser type: " + parserType);
}
ParserEvaluator evaluator = new ParserEvaluator(ParserFactory.create(model), monitors);
evaluator.evaluate(trainingSampleStream.getTestSampleStream());
fmeasure.mergeInto(evaluator.getFMeasure());
}
}
public FMeasure getFMeasure() {
return fmeasure;
}
}