opennlp.tools.ml.maxent.GISTrainer Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.ml.maxent;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import opennlp.tools.ml.AbstractEventTrainer;
import opennlp.tools.ml.model.AbstractModel;
import opennlp.tools.ml.model.DataIndexer;
import opennlp.tools.ml.model.EvalParameters;
import opennlp.tools.ml.model.Event;
import opennlp.tools.ml.model.MaxentModel;
import opennlp.tools.ml.model.MutableContext;
import opennlp.tools.ml.model.OnePassDataIndexer;
import opennlp.tools.ml.model.Prior;
import opennlp.tools.ml.model.UniformPrior;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.TrainingParameters;
/**
* An implementation of Generalized Iterative Scaling. The reference paper
* for this implementation was Adwait Ratnaparkhi's tech report at the
* University of Pennsylvania's Institute for Research in Cognitive Science,
* and is available at ftp://ftp.cis.upenn.edu/pub/ircs/tr/97-08.ps.Z
.
*
* The slack parameter used in the above implementation has been removed by default
* from the computation and a method for updating with Gaussian smoothing has been
* added per Investigating GIS and Smoothing for Maximum Entropy Taggers, Clark and Curran (2002).
* http://acl.ldc.upenn.edu/E/E03/E03-1071.pdf
* The slack parameter can be used by setting useSlackParameter
to true.
* Gaussian smoothing can be used by setting useGaussianSmoothing
to true.
*
* A prior can be used to train models which converge to the distribution which minimizes the
* relative entropy between the distribution specified by the empirical constraints of the training
* data and the specified prior. By default, the uniform distribution is used as the prior.
*/
public class GISTrainer extends AbstractEventTrainer {
@Deprecated
public static final String OLD_LL_THRESHOLD_PARAM = "llthreshold";
public static final String LOG_LIKELIHOOD_THRESHOLD_PARAM = "LLThreshold";
public static final double LOG_LIKELIHOOD_THRESHOLD_DEFAULT = 0.0001;
private double llThreshold = 0.0001;
/**
* Specifies whether unseen context/outcome pairs should be estimated as occur very infrequently.
*/
private boolean useSimpleSmoothing = false;
/**
* Specified whether parameter updates should prefer a distribution of parameters which
* is gaussian.
*/
private boolean useGaussianSmoothing = false;
private double sigma = 2.0;
// If we are using smoothing, this is used as the "number" of
// times we want the trainer to imagine that it saw a feature that it
// actually didn't see. Defaulted to 0.1.
private double _smoothingObservation = 0.1;
/**
* Number of unique events which occured in the event set.
*/
private int numUniqueEvents;
/**
* Number of predicates.
*/
private int numPreds;
/**
* Number of outcomes.
*/
private int numOutcomes;
/**
* Records the array of predicates seen in each event.
*/
private int[][] contexts;
/**
* The value associated with each context. If null then context values are assumes to be 1.
*/
private float[][] values;
/**
* List of outcomes for each event i, in context[i].
*/
private int[] outcomeList;
/**
* Records the num of times an event has been seen for each event i, in context[i].
*/
private int[] numTimesEventsSeen;
/**
* Stores the String names of the outcomes. The GIS only tracks outcomes as
* ints, and so this array is needed to save the model to disk and thereby
* allow users to know what the outcome was in human understandable terms.
*/
private String[] outcomeLabels;
/**
* Stores the String names of the predicates. The GIS only tracks predicates
* as ints, and so this array is needed to save the model to disk and thereby
* allow users to know what the outcome was in human understandable terms.
*/
private String[] predLabels;
/**
* Stores the observed expected values of the features based on training data.
*/
private MutableContext[] observedExpects;
/**
* Stores the estimated parameter value of each predicate during iteration
*/
private MutableContext[] params;
/**
* Stores the expected values of the features based on the current models
*/
private MutableContext[][] modelExpects;
/**
* This is the prior distribution that the model uses for training.
*/
private Prior prior;
/**
* Initial probability for all outcomes.
*/
private EvalParameters evalParams;
public static final String MAXENT_VALUE = "MAXENT";
/**
* If we are using smoothing, this is used as the "number" of times we want
* the trainer to imagine that it saw a feature that it actually didn't see.
* Defaulted to 0.1.
*/
private static final String SMOOTHING_PARAM = "Smoothing";
private static final boolean SMOOTHING_DEFAULT = false;
private static final String SMOOTHING_OBSERVATION_PARAM = "SmoothingObservation";
private static final double SMOOTHING_OBSERVATION = 0.1;
private static final String GAUSSIAN_SMOOTHING_PARAM = "GaussianSmoothing";
private static final boolean GAUSSIAN_SMOOTHING_DEFAULT = false;
private static final String GAUSSIAN_SMOOTHING_SIGMA_PARAM = "GaussianSmoothingSigma";
private static final double GAUSSIAN_SMOOTHING_SIGMA_DEFAULT = 2.0;
/**
* Creates a new GISTrainer
instance which does not print
* progress messages about training to STDOUT.
*/
public GISTrainer() {
printMessages = false;
}
@Override
public boolean isSortAndMerge() {
return true;
}
@Override
public void init(TrainingParameters trainingParameters, Map reportMap) {
super.init(trainingParameters, reportMap);
// Just in case someone is using "llthreshold" instead of LLThreshold...
// this warning can be removed in a future version of OpenNLP.
if (trainingParameters.getDoubleParameter(OLD_LL_THRESHOLD_PARAM, -1.) > 0. ) {
display("WARNING: the training parameter: " + OLD_LL_THRESHOLD_PARAM +
" has been deprecated. Please use " +
LOG_LIKELIHOOD_THRESHOLD_DEFAULT + " instead");
// if they didn't supply a value for both llthreshold AND LLThreshold copy it over..
if (trainingParameters.getDoubleParameter(LOG_LIKELIHOOD_THRESHOLD_PARAM, -1.) < 0. ) {
trainingParameters.put(LOG_LIKELIHOOD_THRESHOLD_PARAM,
trainingParameters.getDoubleParameter(OLD_LL_THRESHOLD_PARAM, LOG_LIKELIHOOD_THRESHOLD_DEFAULT));
}
}
llThreshold = trainingParameters.getDoubleParameter(LOG_LIKELIHOOD_THRESHOLD_PARAM,
LOG_LIKELIHOOD_THRESHOLD_DEFAULT);
useSimpleSmoothing = trainingParameters.getBooleanParameter(SMOOTHING_PARAM, SMOOTHING_DEFAULT);
if (useSimpleSmoothing) {
_smoothingObservation =
trainingParameters.getDoubleParameter(SMOOTHING_OBSERVATION_PARAM, SMOOTHING_OBSERVATION);
}
useGaussianSmoothing =
trainingParameters.getBooleanParameter(GAUSSIAN_SMOOTHING_PARAM, GAUSSIAN_SMOOTHING_DEFAULT);
if (useGaussianSmoothing) {
sigma = trainingParameters.getDoubleParameter(
GAUSSIAN_SMOOTHING_SIGMA_PARAM, GAUSSIAN_SMOOTHING_SIGMA_DEFAULT);
}
if (useSimpleSmoothing && useGaussianSmoothing)
throw new RuntimeException("Cannot set both Gaussian smoothing and Simple smoothing");
}
@Override
public MaxentModel doTrain(DataIndexer indexer) throws IOException {
int iterations = getIterations();
int threads = trainingParameters.getIntParameter(TrainingParameters.THREADS_PARAM, 1);
AbstractModel model = trainModel(iterations, indexer, threads);
return model;
}
/**
* Creates a new GISTrainer
instance.
*
* @param printMessages sends progress messages about training to
* STDOUT when true; trains silently otherwise.
*/
GISTrainer(boolean printMessages) {
this.printMessages = printMessages;
}
/**
* Sets whether this trainer will use smoothing while training the model.
* This can improve model accuracy, though training will potentially take
* longer and use more memory. Model size will also be larger.
*
* @param smooth true if smoothing is desired, false if not
*/
public void setSmoothing(boolean smooth) {
useSimpleSmoothing = smooth;
}
/**
* Sets whether this trainer will use smoothing while training the model.
* This can improve model accuracy, though training will potentially take
* longer and use more memory. Model size will also be larger.
*
* @param timesSeen the "number" of times we want the trainer to imagine
* it saw a feature that it actually didn't see
*/
public void setSmoothingObservation(double timesSeen) {
_smoothingObservation = timesSeen;
}
/**
* Sets whether this trainer will use smoothing while training the model.
* This can improve model accuracy, though training will potentially take
* longer and use more memory. Model size will also be larger.
*/
public void setGaussianSigma(double sigmaValue) {
useGaussianSmoothing = true;
sigma = sigmaValue;
}
/**
* Train a model using the GIS algorithm, assuming 100 iterations and no
* cutoff.
*
* @param eventStream
* The EventStream holding the data on which this model will be
* trained.
* @return The newly trained model, which can be used immediately or saved to
* disk using an opennlp.tools.ml.maxent.io.GISModelWriter object.
*/
public GISModel trainModel(ObjectStream eventStream) throws IOException {
return trainModel(eventStream, 100, 0);
}
/**
* Trains a GIS model on the event in the specified event stream, using the specified number
* of iterations and the specified count cutoff.
*
* @param eventStream A stream of all events.
* @param iterations The number of iterations to use for GIS.
* @param cutoff The number of times a feature must occur to be included.
* @return A GIS model trained with specified
*/
public GISModel trainModel(ObjectStream eventStream, int iterations,
int cutoff) throws IOException {
DataIndexer indexer = new OnePassDataIndexer();
TrainingParameters indexingParameters = new TrainingParameters();
indexingParameters.put(GISTrainer.CUTOFF_PARAM, cutoff);
indexingParameters.put(GISTrainer.ITERATIONS_PARAM, iterations);
Map reportMap = new HashMap<>();
indexer.init(indexingParameters, reportMap);
indexer.index(eventStream);
return trainModel(iterations, indexer);
}
/**
* Train a model using the GIS algorithm.
*
* @param iterations The number of GIS iterations to perform.
* @param di The data indexer used to compress events in memory.
* @return The newly trained model, which can be used immediately or saved
* to disk using an opennlp.tools.ml.maxent.io.GISModelWriter object.
*/
public GISModel trainModel(int iterations, DataIndexer di) {
return trainModel(iterations, di, new UniformPrior(), 1);
}
/**
* Train a model using the GIS algorithm.
*
* @param iterations The number of GIS iterations to perform.
* @param di The data indexer used to compress events in memory.
* @param threads
* @return The newly trained model, which can be used immediately or saved
* to disk using an opennlp.tools.ml.maxent.io.GISModelWriter object.
*/
public GISModel trainModel(int iterations, DataIndexer di, int threads) {
return trainModel(iterations, di, new UniformPrior(), threads);
}
/**
* Train a model using the GIS algorithm.
*
* @param iterations The number of GIS iterations to perform.
* @param di The data indexer used to compress events in memory.
* @param modelPrior The prior distribution used to train this model.
* @return The newly trained model, which can be used immediately or saved
* to disk using an opennlp.tools.ml.maxent.io.GISModelWriter object.
*/
public GISModel trainModel(int iterations, DataIndexer di, Prior modelPrior, int threads) {
if (threads <= 0) {
throw new IllegalArgumentException("threads must be at least one or greater but is " + threads + "!");
}
modelExpects = new MutableContext[threads][];
/* Incorporate all of the needed info *****/
display("Incorporating indexed data for training... \n");
contexts = di.getContexts();
values = di.getValues();
/*
The number of times a predicate occured in the training data.
*/
int[] predicateCounts = di.getPredCounts();
numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = contexts.length;
this.prior = modelPrior;
//printTable(contexts);
// determine the correction constant and its inverse
double correctionConstant = 0;
for (int ci = 0; ci < contexts.length; ci++) {
if (values == null || values[ci] == null) {
if (contexts[ci].length > correctionConstant) {
correctionConstant = contexts[ci].length;
}
} else {
float cl = values[ci][0];
for (int vi = 1; vi < values[ci].length; vi++) {
cl += values[ci][vi];
}
if (cl > correctionConstant) {
correctionConstant = cl;
}
}
}
display("done.\n");
outcomeLabels = di.getOutcomeLabels();
outcomeList = di.getOutcomeList();
numOutcomes = outcomeLabels.length;
predLabels = di.getPredLabels();
prior.setLabels(outcomeLabels, predLabels);
numPreds = predLabels.length;
display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
display("\t Number of Outcomes: " + numOutcomes + "\n");
display("\t Number of Predicates: " + numPreds + "\n");
// set up feature arrays
float[][] predCount = new float[numPreds][numOutcomes];
for (int ti = 0; ti < numUniqueEvents; ti++) {
for (int j = 0; j < contexts[ti].length; j++) {
if (values != null && values[ti] != null) {
predCount[contexts[ti][j]][outcomeList[ti]] += numTimesEventsSeen[ti] * values[ti][j];
} else {
predCount[contexts[ti][j]][outcomeList[ti]] += numTimesEventsSeen[ti];
}
}
}
// A fake "observation" to cover features which are not detected in
// the data. The default is to assume that we observed "1/10th" of a
// feature during training.
final double smoothingObservation = _smoothingObservation;
// Get the observed expectations of the features. Strictly speaking,
// we should divide the counts by the number of Tokens, but because of
// the way the model's expectations are approximated in the
// implementation, this is cancelled out when we compute the next
// iteration of a parameter, making the extra divisions wasteful.
params = new MutableContext[numPreds];
for (int i = 0; i < modelExpects.length; i++) {
modelExpects[i] = new MutableContext[numPreds];
}
observedExpects = new MutableContext[numPreds];
// The model does need the correction constant and the correction feature. The correction constant
// is only needed during training, and the correction feature is not necessary.
// For compatibility reasons the model contains form now on a correction constant of 1,
// and a correction param 0.
evalParams = new EvalParameters(params, numOutcomes);
int[] activeOutcomes = new int[numOutcomes];
int[] outcomePattern;
int[] allOutcomesPattern = new int[numOutcomes];
for (int oi = 0; oi < numOutcomes; oi++) {
allOutcomesPattern[oi] = oi;
}
int numActiveOutcomes;
for (int pi = 0; pi < numPreds; pi++) {
numActiveOutcomes = 0;
if (useSimpleSmoothing) {
numActiveOutcomes = numOutcomes;
outcomePattern = allOutcomesPattern;
} else { //determine active outcomes
for (int oi = 0; oi < numOutcomes; oi++) {
if (predCount[pi][oi] > 0) {
activeOutcomes[numActiveOutcomes] = oi;
numActiveOutcomes++;
}
}
if (numActiveOutcomes == numOutcomes) {
outcomePattern = allOutcomesPattern;
} else {
outcomePattern = new int[numActiveOutcomes];
System.arraycopy(activeOutcomes, 0, outcomePattern, 0, numActiveOutcomes);
}
}
params[pi] = new MutableContext(outcomePattern, new double[numActiveOutcomes]);
for (int i = 0; i < modelExpects.length; i++) {
modelExpects[i][pi] = new MutableContext(outcomePattern, new double[numActiveOutcomes]);
}
observedExpects[pi] = new MutableContext(outcomePattern, new double[numActiveOutcomes]);
for (int aoi = 0; aoi < numActiveOutcomes; aoi++) {
int oi = outcomePattern[aoi];
params[pi].setParameter(aoi, 0.0);
for (MutableContext[] modelExpect : modelExpects) {
modelExpect[pi].setParameter(aoi, 0.0);
}
if (predCount[pi][oi] > 0) {
observedExpects[pi].setParameter(aoi, predCount[pi][oi]);
} else if (useSimpleSmoothing) {
observedExpects[pi].setParameter(aoi, smoothingObservation);
}
}
}
display("...done.\n");
/* Find the parameters *****/
if (threads == 1) {
display("Computing model parameters ...\n");
} else {
display("Computing model parameters in " + threads + " threads...\n");
}
findParameters(iterations, correctionConstant);
// Create and return the model
return new GISModel(params, predLabels, outcomeLabels);
}
/* Estimate and return the model parameters. */
private void findParameters(int iterations, double correctionConstant) {
int threads = modelExpects.length;
ExecutorService executor = Executors.newFixedThreadPool(threads);
CompletionService completionService =
new ExecutorCompletionService<>(executor);
double prevLL = 0.0;
double currLL;
display("Performing " + iterations + " iterations.\n");
for (int i = 1; i <= iterations; i++) {
if (i < 10) {
display(" " + i + ": ");
} else if (i < 100) {
display(" " + i + ": ");
} else {
display(i + ": ");
}
currLL = nextIteration(correctionConstant, completionService);
if (i > 1) {
if (prevLL > currLL) {
System.err.println("Model Diverging: loglikelihood decreased");
break;
}
if (currLL - prevLL < llThreshold) {
break;
}
}
prevLL = currLL;
}
// kill a bunch of these big objects now that we don't need them
observedExpects = null;
modelExpects = null;
numTimesEventsSeen = null;
contexts = null;
executor.shutdown();
}
//modeled on implementation in Zhang Le's maxent kit
private double gaussianUpdate(int predicate, int oid, double correctionConstant) {
double param = params[predicate].getParameters()[oid];
double x0 = 0.0;
double modelValue = modelExpects[0][predicate].getParameters()[oid];
double observedValue = observedExpects[predicate].getParameters()[oid];
for (int i = 0; i < 50; i++) {
double tmp = modelValue * Math.exp(correctionConstant * x0);
double f = tmp + (param + x0) / sigma - observedValue;
double fp = tmp * correctionConstant + 1 / sigma;
if (fp == 0) {
break;
}
double x = x0 - f / fp;
if (Math.abs(x - x0) < 0.000001) {
x0 = x;
break;
}
x0 = x;
}
return x0;
}
/* Compute one iteration of GIS and retutn log-likelihood.*/
private double nextIteration(double correctionConstant,
CompletionService completionService) {
// compute contribution of p(a|b_i) for each feature and the new
// correction parameter
double loglikelihood = 0.0;
int numEvents = 0;
int numCorrect = 0;
// Each thread gets equal number of tasks, if the number of tasks
// is not divisible by the number of threads, the first "leftOver"
// threads have one extra task.
int numberOfThreads = modelExpects.length;
int taskSize = numUniqueEvents / numberOfThreads;
int leftOver = numUniqueEvents % numberOfThreads;
// submit all tasks to the completion service.
for (int i = 0; i < numberOfThreads; i++) {
if (i < leftOver) {
completionService.submit(new ModelExpectationComputeTask(i, i * taskSize + i,
taskSize + 1));
} else {
completionService.submit(new ModelExpectationComputeTask(i,
i * taskSize + leftOver, taskSize));
}
}
for (int i = 0; i < numberOfThreads; i++) {
ModelExpectationComputeTask finishedTask;
try {
finishedTask = completionService.take().get();
} catch (InterruptedException e) {
// TODO: We got interrupted, but that is currently not really supported!
// For now we just print the exception and fail hard. We hopefully soon
// handle this case properly!
e.printStackTrace();
throw new IllegalStateException("Interruption is not supported!", e);
} catch (ExecutionException e) {
// Only runtime exception can be thrown during training, if one was thrown
// it should be re-thrown. That could for example be a NullPointerException
// which is caused through a bug in our implementation.
throw new RuntimeException("Exception during training: " + e.getMessage(), e);
}
// When they are done, retrieve the results ...
numEvents += finishedTask.getNumEvents();
numCorrect += finishedTask.getNumCorrect();
loglikelihood += finishedTask.getLoglikelihood();
}
display(".");
// merge the results of the two computations
for (int pi = 0; pi < numPreds; pi++) {
int[] activeOutcomes = params[pi].getOutcomes();
for (int aoi = 0; aoi < activeOutcomes.length; aoi++) {
for (int i = 1; i < modelExpects.length; i++) {
modelExpects[0][pi].updateParameter(aoi, modelExpects[i][pi].getParameters()[aoi]);
}
}
}
display(".");
// compute the new parameter values
for (int pi = 0; pi < numPreds; pi++) {
double[] observed = observedExpects[pi].getParameters();
double[] model = modelExpects[0][pi].getParameters();
int[] activeOutcomes = params[pi].getOutcomes();
for (int aoi = 0; aoi < activeOutcomes.length; aoi++) {
if (useGaussianSmoothing) {
params[pi].updateParameter(aoi, gaussianUpdate(pi, aoi, correctionConstant));
} else {
if (model[aoi] == 0) {
System.err.println("Model expects == 0 for " + predLabels[pi] + " " + outcomeLabels[aoi]);
}
//params[pi].updateParameter(aoi,(Math.log(observed[aoi]) - Math.log(model[aoi])));
params[pi].updateParameter(aoi, ((Math.log(observed[aoi]) - Math.log(model[aoi]))
/ correctionConstant));
}
for (MutableContext[] modelExpect : modelExpects) {
modelExpect[pi].setParameter(aoi, 0.0); // re-initialize to 0.0's
}
}
}
display(". loglikelihood=" + loglikelihood + "\t" + ((double) numCorrect / numEvents) + "\n");
return loglikelihood;
}
protected void display(String s) {
if (printMessages) {
System.out.print(s);
}
}
private class ModelExpectationComputeTask implements Callable {
private final int startIndex;
private final int length;
final private int threadIndex;
private double loglikelihood = 0;
private int numEvents = 0;
private int numCorrect = 0;
// startIndex to compute, number of events to compute
ModelExpectationComputeTask(int threadIndex, int startIndex, int length) {
this.startIndex = startIndex;
this.length = length;
this.threadIndex = threadIndex;
}
public ModelExpectationComputeTask call() {
final double[] modelDistribution = new double[numOutcomes];
for (int ei = startIndex; ei < startIndex + length; ei++) {
// TODO: check interruption status here, if interrupted set a poisoned flag and return
if (values != null) {
prior.logPrior(modelDistribution, contexts[ei], values[ei]);
GISModel.eval(contexts[ei], values[ei], modelDistribution, evalParams);
} else {
prior.logPrior(modelDistribution, contexts[ei]);
GISModel.eval(contexts[ei], modelDistribution, evalParams);
}
for (int j = 0; j < contexts[ei].length; j++) {
int pi = contexts[ei][j];
int[] activeOutcomes = modelExpects[threadIndex][pi].getOutcomes();
for (int aoi = 0; aoi < activeOutcomes.length; aoi++) {
int oi = activeOutcomes[aoi];
// numTimesEventsSeen must also be thread safe
if (values != null && values[ei] != null) {
modelExpects[threadIndex][pi].updateParameter(aoi, modelDistribution[oi]
* values[ei][j] * numTimesEventsSeen[ei]);
} else {
modelExpects[threadIndex][pi].updateParameter(aoi, modelDistribution[oi]
* numTimesEventsSeen[ei]);
}
}
}
loglikelihood += Math.log(modelDistribution[outcomeList[ei]]) * numTimesEventsSeen[ei];
numEvents += numTimesEventsSeen[ei];
if (printMessages) {
int max = 0;
for (int oi = 1; oi < numOutcomes; oi++) {
if (modelDistribution[oi] > modelDistribution[max]) {
max = oi;
}
}
if (max == outcomeList[ei]) {
numCorrect += numTimesEventsSeen[ei];
}
}
}
return this;
}
synchronized int getNumEvents() {
return numEvents;
}
synchronized int getNumCorrect() {
return numCorrect;
}
synchronized double getLoglikelihood() {
return loglikelihood;
}
}
}