All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.tools.ml.perceptron.SimplePerceptronSequenceTrainer Maven / Gradle / Ivy

There is a newer version: 2.5.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.tools.ml.perceptron;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import opennlp.tools.ml.AbstractEventModelSequenceTrainer;
import opennlp.tools.ml.model.AbstractDataIndexer;
import opennlp.tools.ml.model.AbstractModel;
import opennlp.tools.ml.model.DataIndexer;
import opennlp.tools.ml.model.Event;
import opennlp.tools.ml.model.MutableContext;
import opennlp.tools.ml.model.OnePassDataIndexer;
import opennlp.tools.ml.model.Sequence;
import opennlp.tools.ml.model.SequenceStream;
import opennlp.tools.ml.model.SequenceStreamEventStream;

/**
 * Trains models for sequences using the perceptron algorithm.  Each outcome is represented as
 * a binary perceptron classifier.  This supports standard (integer) weighting as well
 * average weighting.  Sequence information is used in a simplified was to that described in:
 * Discriminative Training Methods for Hidden Markov Models: Theory and Experiments
 * with the Perceptron Algorithm. Michael Collins, EMNLP 2002.
 * Specifically only updates are applied to tokens which were incorrectly tagged by a sequence tagger
 * rather than to all feature across the sequence which differ from the training sequence.
 */
public class SimplePerceptronSequenceTrainer extends AbstractEventModelSequenceTrainer {

  public static final String PERCEPTRON_SEQUENCE_VALUE = "PERCEPTRON_SEQUENCE";

  private int iterations;
  private SequenceStream sequenceStream;
  /** Number of events in the event set. */
  private int numEvents;

  /** Number of predicates. */
  private int numPreds;
  private int numOutcomes;

  /** List of outcomes for each event i, in context[i]. */
  private int[] outcomeList;

  private String[] outcomeLabels;

  /** Stores the average parameter values of each predicate during iteration. */
  private MutableContext[] averageParams;

  /** Mapping between context and an integer */
  private Map pmap;

  private Map omap;

  /** Stores the estimated parameter value of each predicate during iteration. */
  private MutableContext[] params;
  private boolean useAverage;
  private int[][][] updates;
  private static final int VALUE = 0;
  private static final int ITER = 1;
  private static final int EVENT = 2;

  private String[] predLabels;
  private int numSequences;

  public SimplePerceptronSequenceTrainer() {
  }

  @Override
  public void validate() {
    super.validate();

    String algorithmName = getAlgorithm();
    if (algorithmName != null) {
      if (!PERCEPTRON_SEQUENCE_VALUE.equals(algorithmName)) {
        throw new IllegalArgumentException("algorithmName must be PERCEPTRON_SEQUENCE");
      }
    }
  }

  @Deprecated
  @Override
  public boolean isValid() {
    try {
      validate();
      return true;
    }
    catch (IllegalArgumentException e) {
      return false;
    }
  }

  public AbstractModel doTrain(SequenceStream events) throws IOException {
    int iterations = getIterations();
    int cutoff = getCutoff();

    boolean useAverage = trainingParameters.getBooleanParameter("UseAverage", true);

    return trainModel(iterations, events, cutoff, useAverage);
  }

  // << members related to AbstractSequenceTrainer

  public AbstractModel trainModel(int iterations, SequenceStream sequenceStream,
                                  int cutoff, boolean useAverage) throws IOException {
    this.iterations = iterations;
    this.sequenceStream = sequenceStream;

    trainingParameters.put(AbstractDataIndexer.CUTOFF_PARAM, cutoff);
    trainingParameters.put(AbstractDataIndexer.SORT_PARAM, false);
    DataIndexer di = new OnePassDataIndexer();
    di.init(trainingParameters,reportMap);
    di.index(new SequenceStreamEventStream(sequenceStream));
    numSequences = 0;

    sequenceStream.reset();

    while (sequenceStream.read() != null) {
      numSequences++;
    }

    outcomeList  = di.getOutcomeList();
    predLabels = di.getPredLabels();
    pmap = new HashMap<>();

    for (int i = 0; i < predLabels.length; i++) {
      pmap.put(predLabels[i], i);
    }

    display("Incorporating indexed data for training...  \n");
    this.useAverage = useAverage;
    numEvents = di.getNumEvents();

    this.iterations = iterations;
    outcomeLabels = di.getOutcomeLabels();
    omap = new HashMap<>();
    for (int oli = 0; oli < outcomeLabels.length; oli++) {
      omap.put(outcomeLabels[oli], oli);
    }
    outcomeList = di.getOutcomeList();

    numPreds = predLabels.length;
    numOutcomes = outcomeLabels.length;
    if (useAverage) {
      updates = new int[numPreds][numOutcomes][3];
    }

    display("done.\n");

    display("\tNumber of Event Tokens: " + numEvents + "\n");
    display("\t    Number of Outcomes: " + numOutcomes + "\n");
    display("\t  Number of Predicates: " + numPreds + "\n");


    params = new MutableContext[numPreds];
    if (useAverage) averageParams = new MutableContext[numPreds];

    int[] allOutcomesPattern = new int[numOutcomes];
    for (int oi = 0; oi < numOutcomes; oi++) {
      allOutcomesPattern[oi] = oi;
    }

    for (int pi = 0; pi < numPreds; pi++) {
      params[pi] = new MutableContext(allOutcomesPattern, new double[numOutcomes]);
      if (useAverage) averageParams[pi] = new MutableContext(allOutcomesPattern,new double[numOutcomes]);
      for (int aoi = 0; aoi < numOutcomes; aoi++) {
        params[pi].setParameter(aoi, 0.0);
        if (useAverage) averageParams[pi].setParameter(aoi, 0.0);
      }
    }
    double[] modelDistribution = new double[numOutcomes];

    display("Computing model parameters...\n");
    findParameters(iterations);
    display("...done.\n");

    /* Create and return the model ****/
    String[] updatedPredLabels = predLabels;

    if (useAverage) {
      return new PerceptronModel(averageParams, updatedPredLabels, outcomeLabels);
    }
    else {
      return new PerceptronModel(params, updatedPredLabels, outcomeLabels);
    }
  }

  private void findParameters(int iterations) throws IOException {
    display("Performing " + iterations + " iterations.\n");
    for (int i = 1; i <= iterations; i++) {
      if (i < 10)
        display("  " + i + ":  ");
      else if (i < 100)
        display(" " + i + ":  ");
      else
        display(i + ":  ");
      nextIteration(i);
    }
    if (useAverage) {
      trainingStats(averageParams);
    }
    else {
      trainingStats(params);
    }
  }

  public void nextIteration(int iteration) throws IOException {
    iteration--; //move to 0-based index
    int numCorrect = 0;
    int oei = 0;
    int si = 0;
    List> featureCounts = new ArrayList<>(numOutcomes);
    for (int oi = 0; oi < numOutcomes; oi++) {
      featureCounts.add(new HashMap<>());
    }
    PerceptronModel model = new PerceptronModel(params,predLabels,outcomeLabels);

    sequenceStream.reset();

    Sequence sequence;
    while ((sequence = sequenceStream.read()) != null) {
      Event[] taggerEvents = sequenceStream.updateContext(sequence, model);
      Event[] events = sequence.getEvents();
      boolean update = false;
      for (int ei = 0; ei < events.length; ei++, oei++) {
        if (!taggerEvents[ei].getOutcome().equals(events[ei].getOutcome())) {
          update = true;
          //break;
        }
        else {
          numCorrect++;
        }
      }
      if (update) {
        for (int oi = 0; oi < numOutcomes; oi++) {
          featureCounts.get(oi).clear();
        }
        //System.err.print("train:");for (int ei=0;ei "+averageParams[pi].getParameters()[oi]);
                updates[pi][oi][VALUE] = (int) params[pi].getParameters()[oi];
                updates[pi][oi][ITER] = iteration;
                updates[pi][oi][EVENT] = si;
              }
            }
          }
        }
        model = new PerceptronModel(params,predLabels,outcomeLabels);
      }
      si++;
    }
    //finish average computation
    double totIterations = (double) iterations * si;
    if (useAverage && iteration == iterations - 1) {
      for (int pi = 0; pi < numPreds; pi++) {
        double[] predParams = averageParams[pi].getParameters();
        for (int oi = 0; oi < numOutcomes; oi++) {
          if (updates[pi][oi][VALUE] != 0) {
            predParams[oi] += updates[pi][oi][VALUE] * (numSequences
                * (iterations - updates[pi][oi][ITER]) - updates[pi][oi][EVENT]);
          }
          if (predParams[oi] != 0) {
            predParams[oi] /= totIterations;
            averageParams[pi].setParameter(oi, predParams[oi]);
            //System.err.println("updates["+pi+"]["+oi+"]=("+updates[pi][oi][ITER]+","
            // +updates[pi][oi][EVENT]+","+updates[pi][oi][VALUE]+") + ("+iterations+","+0+","
            // +params[pi].getParameters()[oi]+") -> "+averageParams[pi].getParameters()[oi]);
          }
        }
      }
    }
    display(". (" + numCorrect + "/" + numEvents + ") " + ((double) numCorrect / numEvents) + "\n");
  }

  private void trainingStats(MutableContext[] params) throws IOException {
    int numCorrect = 0;
    int oei = 0;

    sequenceStream.reset();

    Sequence sequence;
    while ((sequence = sequenceStream.read()) != null) {
      Event[] taggerEvents = sequenceStream.updateContext(sequence,
          new PerceptronModel(params,predLabels,outcomeLabels));
      for (int ei = 0; ei < taggerEvents.length; ei++, oei++) {
        int max = omap.get(taggerEvents[ei].getOutcome());
        if (max == outcomeList[oei]) {
          numCorrect ++;
        }
      }
    }
    display(". (" + numCorrect + "/" + numEvents + ") " + ((double) numCorrect / numEvents) + "\n");
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy