Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.namefind;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Map;
import opennlp.tools.namefind.TokenNameFinderModel.FeatureGeneratorCreationError;
import opennlp.tools.util.BaseToolFactory;
import opennlp.tools.util.InvalidFormatException;
import opennlp.tools.util.SequenceCodec;
import opennlp.tools.util.ext.ExtensionLoader;
import opennlp.tools.util.featuregen.AdaptiveFeatureGenerator;
import opennlp.tools.util.featuregen.AggregatedFeatureGenerator;
import opennlp.tools.util.featuregen.BigramNameFeatureGenerator;
import opennlp.tools.util.featuregen.CachedFeatureGenerator;
import opennlp.tools.util.featuregen.GeneratorFactory;
import opennlp.tools.util.featuregen.OutcomePriorFeatureGenerator;
import opennlp.tools.util.featuregen.PreviousMapFeatureGenerator;
import opennlp.tools.util.featuregen.SentenceFeatureGenerator;
import opennlp.tools.util.featuregen.TokenClassFeatureGenerator;
import opennlp.tools.util.featuregen.TokenFeatureGenerator;
import opennlp.tools.util.featuregen.WindowFeatureGenerator;
// Idea of this factory is that most resources/impls used by the name finder
// can be modified through this class!
// That only works if that's the central class used for training/runtime
public class TokenNameFinderFactory extends BaseToolFactory {
private byte[] featureGeneratorBytes;
private Map resources;
private SequenceCodec seqCodec;
/**
* Creates a {@link TokenNameFinderFactory} that provides the default implementation
* of the resources.
*/
public TokenNameFinderFactory() {
this.seqCodec = new BioCodec();
}
public TokenNameFinderFactory(byte[] featureGeneratorBytes, final Map resources,
SequenceCodec seqCodec) {
init(featureGeneratorBytes, resources, seqCodec);
}
void init(byte[] featureGeneratorBytes, final Map resources,
SequenceCodec seqCodec) {
this.featureGeneratorBytes = featureGeneratorBytes;
this.resources = resources;
this.seqCodec = seqCodec;
}
private static byte[] loadDefaultFeatureGeneratorBytes() {
ByteArrayOutputStream bytes = new ByteArrayOutputStream();
try (InputStream in = TokenNameFinderFactory.class.getResourceAsStream(
"/opennlp/tools/namefind/ner-default-features.xml")) {
if (in == null) {
throw new IllegalStateException("Classpath must contain ner-default-features.xml file!");
}
byte[] buf = new byte[1024];
int len;
while ((len = in.read(buf)) > 0) {
bytes.write(buf, 0, len);
}
}
catch (IOException e) {
throw new IllegalStateException("Failed reading from ner-default-features.xml file on classpath!");
}
return bytes.toByteArray();
}
protected SequenceCodec getSequenceCodec() {
return seqCodec;
}
protected Map getResources() {
return resources;
}
protected byte[] getFeatureGenerator() {
return featureGeneratorBytes;
}
public static TokenNameFinderFactory create(String subclassName, byte[] featureGeneratorBytes,
final Map resources, SequenceCodec seqCodec)
throws InvalidFormatException {
TokenNameFinderFactory theFactory;
if (subclassName == null) {
// will create the default factory
theFactory = new TokenNameFinderFactory();
} else {
try {
theFactory = ExtensionLoader.instantiateExtension(
TokenNameFinderFactory.class, subclassName);
} catch (Exception e) {
String msg = "Could not instantiate the " + subclassName
+ ". The initialization throw an exception.";
System.err.println(msg);
e.printStackTrace();
throw new InvalidFormatException(msg, e);
}
}
theFactory.init(featureGeneratorBytes, resources, seqCodec);
return theFactory;
}
@Override
public void validateArtifactMap() throws InvalidFormatException {
// no additional artifacts
}
public SequenceCodec createSequenceCodec() {
if (artifactProvider != null) {
String sequeceCodecImplName = artifactProvider.getManifestProperty(
TokenNameFinderModel.SEQUENCE_CODEC_CLASS_NAME_PARAMETER);
return instantiateSequenceCodec(sequeceCodecImplName);
}
else {
return seqCodec;
}
}
public NameContextGenerator createContextGenerator() {
AdaptiveFeatureGenerator featureGenerator = createFeatureGenerators();
if (featureGenerator == null) {
featureGenerator = new CachedFeatureGenerator(
new WindowFeatureGenerator(new TokenFeatureGenerator(), 2, 2),
new WindowFeatureGenerator(new TokenClassFeatureGenerator(true), 2, 2),
new OutcomePriorFeatureGenerator(),
new PreviousMapFeatureGenerator(),
new BigramNameFeatureGenerator(),
new SentenceFeatureGenerator(true, false));
}
return new DefaultNameContextGenerator(featureGenerator);
}
/**
* Creates the {@link AdaptiveFeatureGenerator}. Usually this
* is a set of generators contained in the {@link AggregatedFeatureGenerator}.
*
* Note:
* The generators are created on every call to this method.
*
* @return the feature generator or null if there is no descriptor in the model
*/
public AdaptiveFeatureGenerator createFeatureGenerators() {
if (featureGeneratorBytes == null && artifactProvider != null) {
featureGeneratorBytes = artifactProvider.getArtifact(
TokenNameFinderModel.GENERATOR_DESCRIPTOR_ENTRY_NAME);
}
if (featureGeneratorBytes == null) {
featureGeneratorBytes = loadDefaultFeatureGeneratorBytes();
}
InputStream descriptorIn = new ByteArrayInputStream(featureGeneratorBytes);
AdaptiveFeatureGenerator generator;
try {
generator = GeneratorFactory.create(descriptorIn, key -> {
if (artifactProvider != null) {
return artifactProvider.getArtifact(key);
}
else {
return resources.get(key);
}
});
} catch (InvalidFormatException e) {
// It is assumed that the creation of the feature generation does not
// fail after it succeeded once during model loading.
// But it might still be possible that such an exception is thrown,
// in this case the caller should not be forced to handle the exception
// and a Runtime Exception is thrown instead.
// If the re-creation of the feature generation fails it is assumed
// that this can only be caused by a programming mistake and therefore
// throwing a Runtime Exception is reasonable
throw new FeatureGeneratorCreationError(e);
} catch (IOException e) {
throw new IllegalStateException("Reading from mem cannot result in an I/O error", e);
}
return generator;
}
public static SequenceCodec instantiateSequenceCodec(
String sequenceCodecImplName) {
if (sequenceCodecImplName != null) {
return ExtensionLoader.instantiateExtension(
SequenceCodec.class, sequenceCodecImplName);
}
else {
// If nothing is specified return old default!
return new BioCodec();
}
}
}