opennlp.tools.cmdline.languagemodel.NGramLanguageModelTool Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.cmdline.languagemodel;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import opennlp.tools.cmdline.BasicCmdLineTool;
import opennlp.tools.cmdline.CLI;
import opennlp.tools.cmdline.CmdLineUtil;
import opennlp.tools.cmdline.PerformanceMonitor;
import opennlp.tools.cmdline.SystemInputStreamFactory;
import opennlp.tools.languagemodel.NGramLanguageModel;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.PlainTextByLineStream;
/**
* Command line tool for {@link opennlp.tools.languagemodel.NGramLanguageModel}.
*/
public class NGramLanguageModelTool extends BasicCmdLineTool {
private static final Logger logger = LoggerFactory.getLogger(NGramLanguageModelTool.class);
@Override
public String getShortDescription() {
return "Gives the probability and most probable next token(s) of a sequence of tokens in a " +
"language model";
}
@Override
public void run(String[] args) {
File lmFile = new File(args[0]);
try (InputStream stream = new BufferedInputStream(new FileInputStream(lmFile))) {
NGramLanguageModel nGramLanguageModel = new NGramLanguageModel(stream);
PerformanceMonitor perfMon = null;
try (ObjectStream lineStream = new PlainTextByLineStream(
new SystemInputStreamFactory(), SystemInputStreamFactory.encoding())) {
perfMon = new PerformanceMonitor("nglm");
perfMon.start();
String line;
while ((line = lineStream.read()) != null) {
double probability;
String[] predicted;
// TODO : use a Tokenizer here
String[] tokens = line.split(" ");
try {
probability = nGramLanguageModel.calculateProbability(tokens);
predicted = nGramLanguageModel.predictNextTokens(tokens);
} catch (Exception e) {
logger.error("Error for line: {}", line, e);
continue;
}
logger.info("{} -> prob: {}, next: {}",
Arrays.toString(tokens), probability, Arrays.toString(predicted));
perfMon.incrementCounter();
}
} catch (IOException e) {
CmdLineUtil.handleStdinIoError(e);
}
perfMon.stopAndPrintFinalResult();
} catch (IOException e) {
logger.error(e.getLocalizedMessage(), e);
}
// do nothing
}
@Override
public String getHelp() {
return "Usage: " + CLI.CMD + " " + getName() + " model";
}
}