All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.tools.doccat.DocumentCategorizerEvaluator Maven / Gradle / Ivy

There is a newer version: 2.5.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.tools.doccat;

import opennlp.tools.tokenize.TokenSample;
import opennlp.tools.util.eval.Evaluator;
import opennlp.tools.util.eval.Mean;

/**
 * The {@link DocumentCategorizerEvaluator} measures the performance of
 * the given {@link DocumentCategorizer} with the provided reference
 * {@link DocumentSample samples}.
 *
 * @see DocumentCategorizer
 * @see DocumentSample
 * @see Evaluator
 */
public class DocumentCategorizerEvaluator extends Evaluator {

  private final DocumentCategorizer categorizer;

  private final Mean accuracy = new Mean();

  /**
   * Initializes a {@link DocumentCategorizerEvaluator} instance.
   *
   * @param categorizer the {@link DocumentCategorizer} instance.
   * @param listeners the {@link DoccatEvaluationMonitor evaluation listeners}.
   */
  public DocumentCategorizerEvaluator(DocumentCategorizer categorizer,
      DoccatEvaluationMonitor ... listeners) {
    super(listeners);
    this.categorizer = categorizer;
  }

  /**
   * Evaluates the given reference {@link DocumentSample sample}.
   * 

* This is done by categorizing the document from the provided * {@link DocumentSample}. The detected category is then used * to calculate and update the score. * * @param sample The reference {@link TokenSample}. * @return The processed {@link TokenSample}. */ public DocumentSample processSample(DocumentSample sample) { String[] document = sample.getText(); double[] probs = categorizer.categorize(document); String cat = categorizer.getBestCategory(probs); if (sample.getCategory().equals(cat)) { accuracy.add(1); } else { accuracy.add(0); } return new DocumentSample(cat, sample.getText()); } /** * {@code accuracy = correctly categorized documents / total documents} * * @return Retrieves the accuracy of provided {@link DocumentCategorizer}. */ public double getAccuracy() { return accuracy.mean(); } public long getDocumentCount() { return accuracy.count(); } /** * Represents this object as human-readable {@link String}. */ @Override public String toString() { return "Accuracy: " + accuracy.mean() + "\n" + "Number of documents: " + accuracy.count(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy