opennlp.tools.ml.AbstractEventTrainer Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.ml;
import java.io.IOException;
import opennlp.tools.ml.model.AbstractDataIndexer;
import opennlp.tools.ml.model.ChecksumEventStream;
import opennlp.tools.ml.model.DataIndexer;
import opennlp.tools.ml.model.DataIndexerFactory;
import opennlp.tools.ml.model.Event;
import opennlp.tools.ml.model.MaxentModel;
import opennlp.tools.util.InsufficientTrainingDataException;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.TrainingParameters;
/**
* A basic {@link EventTrainer} implementation.
*/
public abstract class AbstractEventTrainer extends AbstractTrainer implements EventTrainer {
public static final String DATA_INDEXER_PARAM = "DataIndexer";
public static final String DATA_INDEXER_ONE_PASS_VALUE = "OnePass";
public static final String DATA_INDEXER_TWO_PASS_VALUE = "TwoPass";
public static final String DATA_INDEXER_ONE_PASS_REAL_VALUE = "OnePassRealValue";
public AbstractEventTrainer() {
}
public AbstractEventTrainer(TrainingParameters parameters) {
super(parameters);
}
@Override
public void validate() {
super.validate();
}
public abstract boolean isSortAndMerge();
public DataIndexer getDataIndexer(ObjectStream events) throws IOException {
trainingParameters.put(AbstractDataIndexer.SORT_PARAM, isSortAndMerge());
// If the cutoff was set, don't overwrite the value.
if (trainingParameters.getIntParameter(CUTOFF_PARAM, -1) == -1) {
trainingParameters.put(CUTOFF_PARAM, 5);
}
DataIndexer indexer = DataIndexerFactory.getDataIndexer(trainingParameters, reportMap);
indexer.index(events);
return indexer;
}
public abstract MaxentModel doTrain(DataIndexer indexer) throws IOException;
@Override
public final MaxentModel train(DataIndexer indexer) throws IOException {
validate();
if (indexer.getOutcomeLabels().length <= 1) {
throw new InsufficientTrainingDataException("Training data must contain more than one outcome");
}
MaxentModel model = doTrain(indexer);
addToReport(AbstractTrainer.TRAINER_TYPE_PARAM, EventTrainer.EVENT_VALUE);
return model;
}
@Override
public final MaxentModel train(ObjectStream events) throws IOException {
validate();
ChecksumEventStream hses = new ChecksumEventStream(events);
DataIndexer indexer = getDataIndexer(hses);
addToReport("Training-Eventhash", String.valueOf(hses.calculateChecksum()));
return train(indexer);
}
}