All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.tools.ml.model.AbstractDataIndexer Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.tools.ml.model;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import opennlp.tools.util.InsufficientTrainingDataException;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.TrainingParameters;

/**
 * Abstract {@link DataIndexer} implementation for collecting
 * event and context counts used in training.
 * 
 * @see DataIndexer
 */
public abstract class AbstractDataIndexer implements DataIndexer {

  private static final Logger logger = LoggerFactory.getLogger(AbstractDataIndexer.class);

  public static final String SORT_PARAM = "sort";
  public static final boolean SORT_DEFAULT = true;

  protected TrainingParameters trainingParameters;
  protected Map reportMap;

  /**
   * {@inheritDoc}
   */
  @Override
  public void init(TrainingParameters indexingParameters, Map reportMap) {
    this.reportMap = reportMap;
    if (this.reportMap == null) reportMap = new HashMap<>();
    trainingParameters = indexingParameters;
  }

  private int numEvents;
  /** The integer contexts associated with each unique event. */
  protected int[][] contexts;
  /** The integer outcome associated with each unique event. */
  protected int[] outcomeList;
  /** The number of times an event occurred in the training data. */
  protected int[] numTimesEventsSeen;
  /** The predicate/context names. */
  protected String[] predLabels;
  /** The names of the outcomes. */
  protected String[] outcomeLabels;
  /** The number of times each predicate occurred. */
  protected int[] predCounts;

  /**
   * {@inheritDoc}
   */
  @Override
  public int[][] getContexts() {
    return contexts;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int[] getNumTimesEventsSeen() {
    return numTimesEventsSeen;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int[] getOutcomeList() {
    return outcomeList;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public String[] getPredLabels() {
    return predLabels;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public String[] getOutcomeLabels() {
    return outcomeLabels;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int[] getPredCounts() {
    return predCounts;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int getNumEvents() {
    return numEvents;
  }
  
  /**
   * Sorts and uniques the array of comparable events and return the number of unique events.
   * This method will alter the {@code eventsToCompare} list.
   * 

* It does an in place sort, followed by an in place edit to remove duplicates. * * @param eventsToCompare The {@link List} events used as input. * @param sort Whether to use sorting, or not. * * @return The number of unique events in the specified list. * @throws InsufficientTrainingDataException Thrown if not enough events are provided * @since maxent 1.2.6 */ protected int sortAndMerge(List eventsToCompare, boolean sort) throws InsufficientTrainingDataException { int numUniqueEvents = 1; numEvents = eventsToCompare.size(); if (sort && eventsToCompare.size() > 0) { Collections.sort(eventsToCompare); ComparableEvent ce = eventsToCompare.get(0); for (int i = 1; i < numEvents; i++) { ComparableEvent ce2 = eventsToCompare.get(i); if (ce.compareTo(ce2) == 0) { ce.seen++; // increment the seen count eventsToCompare.set(i, null); // kill the duplicate } else { ce = ce2; // a new champion emerges... numUniqueEvents++; // increment the # of unique events } } } else { numUniqueEvents = eventsToCompare.size(); } if (numUniqueEvents == 0) { throw new InsufficientTrainingDataException("Insufficient training data to create model."); } if (sort) logger.info("done. Reduced {} events to {}.", numEvents, numUniqueEvents); contexts = new int[numUniqueEvents][]; outcomeList = new int[numUniqueEvents]; numTimesEventsSeen = new int[numUniqueEvents]; for (int i = 0, j = 0; i < numEvents; i++) { ComparableEvent evt = eventsToCompare.get(i); if (null == evt) { continue; // this was a dupe, skip over it. } numTimesEventsSeen[j] = evt.seen; outcomeList[j] = evt.outcome; contexts[j] = evt.predIndexes; ++j; } return numUniqueEvents; } /** * Performs the data indexing. *

* Note: * Make sure the {@link #init(TrainingParameters, Map)} method is called first. * * @param events A {@link ObjectStream} of events used as input. * @param predicateIndex A {@link Map} providing the data of a predicate index. * * @throws IOException Thrown if IO errors occurred during indexing. */ protected List index(ObjectStream events, Map predicateIndex) throws IOException { Map omap = new HashMap<>(); List eventsToCompare = new ArrayList<>(); Event ev; while ((ev = events.read()) != null) { omap.putIfAbsent(ev.getOutcome(), omap.size()); int[] cons = Arrays.stream(ev.getContext()) .map(predicateIndex::get) .filter(Objects::nonNull) .mapToInt(i -> i).toArray(); // drop events with no active features if (cons.length > 0) { int ocID = omap.get(ev.getOutcome()); eventsToCompare.add(new ComparableEvent(ocID, cons, ev.getValues())); } else { logger.info("Dropped event {}:{}", ev.getOutcome(), Arrays.asList(ev.getContext())); } } outcomeLabels = toIndexedStringArray(omap); predLabels = toIndexedStringArray(predicateIndex); return eventsToCompare; } /** * Updates the {@link Map} of predicates and counter with the specified event contexts. * * @param ec The contexts/features which occur in an event. * @param counter The predicate counters in form of a {@link Map}. */ protected static void update(String[] ec, Map counter) { for (String s : ec) { counter.merge(s, 1, (value, one) -> value + one); } } /** * Utility method for creating a {@code String[]} from a map whose * keys are labels (Strings) to be stored in the array and whose * values are the indices (Integers) at which the corresponding * labels should be inserted. * * @param labelToIndexMap A {@link Map} that holds labels to index positions. * @return The resulting {@code String[]}. */ protected static String[] toIndexedStringArray(Map labelToIndexMap) { return labelToIndexMap.entrySet().stream() .sorted(Comparator.comparingInt(Map.Entry::getValue)) .map(Map.Entry::getKey).toArray(String[]::new); } @Override public float[][] getValues() { return null; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy