All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.tools.ml.naivebayes.NaiveBayesModelWriter Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.tools.ml.naivebayes;

import java.io.IOException;
import java.util.Arrays;
import java.util.Map;

import opennlp.tools.ml.AbstractMLModelWriter;
import opennlp.tools.ml.model.AbstractModel;
import opennlp.tools.ml.model.AbstractModelWriter;
import opennlp.tools.ml.model.ComparablePredicate;
import opennlp.tools.ml.model.Context;

/**
 * The base class for {@link NaiveBayesModel} writers.
 * 

* It provides the {@link #persist()} method which takes care of the structure * of a stored document, and requires an extending class to define precisely * how the data should be stored. * * @see NaiveBayesModel * @see AbstractModelWriter * @see AbstractMLModelWriter */ public abstract class NaiveBayesModelWriter extends AbstractMLModelWriter { /** * Initializes a {@link NaiveBayesModelWriter} for a * {@link AbstractModel NaiveBayes model}. * * @param model The {@link AbstractModel NaiveBayes model} to be written. */ public NaiveBayesModelWriter(AbstractModel model) { super(); Object[] data = model.getDataStructures(); this.numOutcomes = model.getNumOutcomes(); PARAMS = (Context[]) data[0]; @SuppressWarnings("unchecked") Map pmap = (Map) data[1]; OUTCOME_LABELS = (String[]) data[2]; PARAMS = new Context[pmap.size()]; PRED_LABELS = new String[pmap.size()]; int i = 0; for (Map.Entry pred : pmap.entrySet()) { PRED_LABELS[i] = pred.getKey(); PARAMS[i] = pred.getValue(); i++; } } /** * {@inheritDoc} */ @Override protected ComparablePredicate[] sortValues() { ComparablePredicate[] sortPreds = new ComparablePredicate[PARAMS.length]; int numParams = 0; for (int pid = 0; pid < PARAMS.length; pid++) { int[] predkeys = PARAMS[pid].getOutcomes(); // Arrays.sort(predkeys); int numActive = predkeys.length; double[] activeParams = PARAMS[pid].getParameters(); numParams += numActive; /* * double[] activeParams = new double[numActive]; * * int id = 0; for (int i=0; i < predkeys.length; i++) { int oid = * predkeys[i]; activeOutcomes[id] = oid; activeParams[id] = * PARAMS[pid].getParams(oid); id++; } */ sortPreds[pid] = new ComparablePredicate(PRED_LABELS[pid], predkeys, activeParams); } Arrays.sort(sortPreds); return sortPreds; } /** * Writes the {@link AbstractModel perceptron model}, using the * {@link #writeUTF(String)}, {@link #writeDouble(double)}, or {@link #writeInt(int)}} * methods implemented by extending classes. * *

If you wish to create a {@link NaiveBayesModelWriter} which uses a different * structure, it will be necessary to override the {@link #persist()} method in * addition to implementing the {@code writeX(..)} methods. * * @throws IOException Thrown if IO errors occurred. */ @Override public void persist() throws IOException { // the type of model (NaiveBayes) writeUTF("NaiveBayes"); super.persist(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy