All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.tools.util.model.ModelUtil Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.tools.util.model;

import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Map;
import java.util.Objects;
import java.util.Set;

import opennlp.tools.commons.Internal;
import opennlp.tools.ml.maxent.GISTrainer;
import opennlp.tools.ml.model.AbstractModel;
import opennlp.tools.ml.model.GenericModelWriter;
import opennlp.tools.ml.model.MaxentModel;
import opennlp.tools.util.TrainingParameters;

/**
 * Utility class for handling of {@link MaxentModel models}.
 */
public final class ModelUtil {

  private ModelUtil() {
    // not intended to be instantiated
  }

  /**
   * Writes the given {@link MaxentModel} to the specified {@link OutputStream}.
   * 

* Note: * The provided stream is not closed. * * @param model The {@link MaxentModel model} to be written. * @param out the {@link OutputStream stream} to be used for writing. * * @throws IOException Thrown if IO errors occurred. * @throws IllegalArgumentException Thrown if one of the parameters is {@code null}. */ public static void writeModel(MaxentModel model, final OutputStream out) throws IOException, IllegalArgumentException { Objects.requireNonNull(model, "model parameter must not be null"); Objects.requireNonNull(out, "out parameter must not be null"); GenericModelWriter modelWriter = new GenericModelWriter((AbstractModel) model, new DataOutputStream(new OutputStream() { @Override public void write(int b) throws IOException { out.write(b); } })); modelWriter.persist(); } /** * Checks if the {@code expectedOutcomes} are all contained as outcomes in the * given {@link MaxentModel model}. * * @param model A valid {@link MaxentModel} instance. * @param expectedOutcomes The outcomes to be checked for. * * @return {@code true} if all expected outcomes are the only outcomes of the model * {@code false} otherwise. */ public static boolean validateOutcomes(MaxentModel model, String... expectedOutcomes) { boolean result = true; if (expectedOutcomes.length == model.getNumOutcomes()) { Set expectedOutcomesSet = new HashSet<>(Arrays.asList(expectedOutcomes)); for (int i = 0; i < model.getNumOutcomes(); i++) { if (!expectedOutcomesSet.contains(model.getOutcome(i))) { result = false; break; } } } else { result = false; } return result; } /** * Reads from the provided {@link InputStream} into a byte array. * * @param in A valid, open {@link InputStream} to read data from. * * @return A {@code byte[]} with the data read. * * @throws IOException Thrown if IO errors occurred. */ public static byte[] read(InputStream in) throws IOException { ByteArrayOutputStream byteArrayOut = new ByteArrayOutputStream(); int length; byte[] buffer = new byte[1024]; while ((length = in.read(buffer)) > 0) { byteArrayOut.write(buffer, 0, length); } byteArrayOut.close(); return byteArrayOut.toByteArray(); } /** * Adds {@code cutoff} and {@code iterations} to {@code manifestInfoEntries}. * * @param manifestInfoEntries A {@link Map} representing a {@code manifest.properties} config. * @param cutoff The cut-off value to set. Must be greater than {@code 0}. * @param iterations The number of iterations to set. Must be greater than {@code 0}. */ public static void addCutoffAndIterations(Map manifestInfoEntries, int cutoff, int iterations) { manifestInfoEntries.put(BaseModel.TRAINING_CUTOFF_PROPERTY, Integer.toString(cutoff)); manifestInfoEntries.put(BaseModel.TRAINING_ITERATIONS_PROPERTY, Integer.toString(iterations)); } /** * Creates the default {@link TrainingParameters} in case they are not provided. *

* Note: * Do not use this method, internal use only! * * @return The {@link TrainingParameters} instance with default configuration. */ @Internal public static TrainingParameters createDefaultTrainingParameters() { TrainingParameters mlParams = new TrainingParameters(); mlParams.put(TrainingParameters.ALGORITHM_PARAM, GISTrainer.MAXENT_VALUE); mlParams.put(TrainingParameters.ITERATIONS_PARAM, 100); mlParams.put(TrainingParameters.CUTOFF_PARAM, 5); return mlParams; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy