All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.uima.util.OpennlpUtil Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.uima.util;

import java.io.BufferedOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import org.apache.uima.resource.ResourceInitializationException;

import opennlp.tools.ml.TrainerFactory;
import opennlp.tools.util.TrainingParameters;
import opennlp.tools.util.model.BaseModel;

/**
 * This class contains util methods for the maxent library.
 */
final public class OpennlpUtil {
  
  private OpennlpUtil() {
    // this is util class must not be instantiated
  }

  /**
   * Serializes a {@link BaseModel GIS model} and writes it to the given
   * {@link File}.
   *
   * @param model The {@link BaseModel} to serialize.
   * @param modelFile The {@link File} to serialize into.
   * @throws IOException Thrown if IO errors occurred.
   */
  public static void serialize(BaseModel model, File modelFile)
      throws IOException {
    try (OutputStream fileOut = new FileOutputStream(modelFile);
        OutputStream modelOut = new BufferedOutputStream(fileOut)) {
      model.serialize(modelOut);
    }
  }

  /**
   * Loads data from a given {@link File}.
   *
   * @param inFile The {@link File} to read bytes from.
   * @return The bytes that have been read.
   * @throws IOException Thrown if IO errors occurred.
   */
  public static byte[] loadBytes(File inFile) throws IOException {
    ByteArrayOutputStream bytes = new ByteArrayOutputStream();

    try (InputStream in = new FileInputStream(inFile)) {

      byte[] buffer = new byte[1024];
      int len;
      while ((len = in.read(buffer)) > 0) {
        bytes.write(buffer, 0, len);
      }
    }

    return bytes.toByteArray();
  }

  /**
   * Loads data from a given {@link File}.
   *
   * @param inFileValue The name of the {@link File} to read bytes from.
   * @param isSequenceTrainingAllowed Whether the {@link TrainerFactory.TrainerType#SEQUENCE_TRAINER}
   *                                  method is allowed or not.
   * @return The {@link TrainingParameters} that have been read.
   *
   * @throws ResourceInitializationException Thrown if IO errors occurred or the {@code inFileValue}
   *                                         does not reference a valid training parameters file.
   */
  public static TrainingParameters loadTrainingParams(String inFileValue,
      boolean isSequenceTrainingAllowed) throws ResourceInitializationException {

    TrainingParameters params;
    if (inFileValue != null) {
      try (InputStream paramsIn = new FileInputStream(inFileValue)) {
        params = new opennlp.tools.util.TrainingParameters(paramsIn);
      } catch (IOException e) {
        throw new ResourceInitializationException(e);
      }

      if (!TrainerFactory.isValid(params)) {
        throw new ResourceInitializationException(new Exception("Training parameters file is invalid!"));
      }

      TrainerFactory.TrainerType trainerType = TrainerFactory.getTrainerType(params);
      if (!isSequenceTrainingAllowed && TrainerFactory.TrainerType.SEQUENCE_TRAINER.equals(trainerType)) {
        throw new ResourceInitializationException(new Exception("Sequence training is not supported!"));
      }
    }
    else {
      params = TrainingParameters.defaultParams();
    }

    return params;
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy