org.apache.paimon.flink.sink.RowWithBucketChannelComputer Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.paimon.flink.sink;
import org.apache.paimon.data.InternalRow;
import org.apache.paimon.schema.TableSchema;
import org.apache.paimon.table.sink.ChannelComputer;
import org.apache.paimon.table.sink.RowPartitionKeyExtractor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.table.data.RowData;
/** Hash key of a {@link RowData} with bucket. */
public class RowWithBucketChannelComputer implements ChannelComputer> {
private static final long serialVersionUID = 1L;
private final TableSchema schema;
private transient int numChannels;
private transient RowPartitionKeyExtractor extractor;
public RowWithBucketChannelComputer(TableSchema schema) {
this.schema = schema;
}
@Override
public void setup(int numChannels) {
this.numChannels = numChannels;
this.extractor = new RowPartitionKeyExtractor(schema);
}
@Override
public int channel(Tuple2 record) {
return ChannelComputer.select(extractor.partition(record.f0), record.f1, numChannels);
}
@Override
public String toString() {
return "shuffle by partition & bucket";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy