All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.paimon.flink.sink.UnawareBucketSink Maven / Gradle / Ivy

There is a newer version: 0.9.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.paimon.flink.sink;

import org.apache.paimon.flink.source.AppendBypassCoordinateOperatorFactory;
import org.apache.paimon.table.FileStoreTable;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.java.typeutils.EitherTypeInfo;
import org.apache.flink.configuration.ExecutionOptions;
import org.apache.flink.streaming.api.datastream.DataStream;

import javax.annotation.Nullable;

import java.util.Map;

/**
 * Sink for unaware-bucket table.
 *
 * 

Note: in unaware-bucket mode, we don't shuffle by bucket in inserting. We can assign * compaction to the inserting jobs aside. */ public abstract class UnawareBucketSink extends FlinkWriteSink { protected final FileStoreTable table; protected final LogSinkFunction logSinkFunction; @Nullable protected final Integer parallelism; public UnawareBucketSink( FileStoreTable table, @Nullable Map overwritePartitions, LogSinkFunction logSinkFunction, @Nullable Integer parallelism) { super(table, overwritePartitions); this.table = table; this.logSinkFunction = logSinkFunction; this.parallelism = parallelism; } @Override public DataStream doWrite( DataStream input, String initialCommitUser, @Nullable Integer parallelism) { DataStream written = super.doWrite(input, initialCommitUser, this.parallelism); boolean enableCompaction = !table.coreOptions().writeOnly(); boolean isStreamingMode = input.getExecutionEnvironment() .getConfiguration() .get(ExecutionOptions.RUNTIME_MODE) == RuntimeExecutionMode.STREAMING; // if enable compaction, we need to add compaction topology to this job if (enableCompaction && isStreamingMode) { written = written.transform( "Compact Coordinator: " + table.name(), new EitherTypeInfo<>( new CommittableTypeInfo(), new CompactionTaskTypeInfo()), new AppendBypassCoordinateOperatorFactory<>(table)) .startNewChain() .forceNonParallel() .transform( "Compact Worker: " + table.name(), new CommittableTypeInfo(), new AppendBypassCompactWorkerOperator.Factory( table, initialCommitUser)) .startNewChain() .setParallelism(written.getParallelism()); } return written; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy