org.apache.paimon.spark.commands.SparkDataFileMeta.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.paimon.spark.commands
import org.apache.paimon.data.BinaryRow
import org.apache.paimon.io.DataFileMeta
import org.apache.paimon.spark.PaimonImplicits
import org.apache.paimon.table.source.{DataSplit, DeletionFile}
import org.apache.paimon.utils.FileStorePathFactory
import scala.collection.JavaConverters._
case class SparkDataFileMeta(
partition: BinaryRow,
bucket: Int,
totalBuckets: Int,
dataFileMeta: DataFileMeta,
deletionFile: Option[DeletionFile] = None) {
def relativePath(fileStorePathFactory: FileStorePathFactory): String = {
fileStorePathFactory
.relativeBucketPath(partition, bucket)
.toUri
.toString + "/" + dataFileMeta.fileName()
}
}
object SparkDataFileMeta {
def convertToSparkDataFileMeta(
dataSplit: DataSplit,
totalBuckets: Int): Seq[SparkDataFileMeta] = {
import PaimonImplicits._
val dvFactory =
DeletionFile.factory(dataSplit.dataFiles(), dataSplit.deletionFiles().orElse(null))
dataSplit.dataFiles().asScala.map {
file =>
SparkDataFileMeta(
dataSplit.partition,
dataSplit.bucket,
totalBuckets,
file,
dvFactory.create(file.fileName()))
}
}.toSeq
def convertToDataSplits(
sparkDataFiles: Array[SparkDataFileMeta],
rawConvertible: Boolean,
pathFactory: FileStorePathFactory): Array[DataSplit] = {
sparkDataFiles
.groupBy(file => (file.partition, file.bucket))
.map {
case ((partition, bucket), files) =>
val (dataFiles, deletionFiles) = files.map {
file => (file.dataFileMeta, file.deletionFile.orNull)
}.unzip
new DataSplit.Builder()
.withPartition(partition)
.withBucket(bucket)
.withDataFiles(dataFiles.toList.asJava)
.withDataDeletionFiles(deletionFiles.toList.asJava)
.rawConvertible(rawConvertible)
.withBucketPath(pathFactory.bucketPath(partition, bucket).toString)
.build()
}
.toArray
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy